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Suppose that G is a topological group and H is a closed subgroup
of G . Then G/H stands for the quotient space of G which consists
of left cosets xH, where x ∈ G . We call the spaces G/H so
obtained coset spaces. They needn’t be homeomorphic to a
topological group, but are homogeneous and Tychonoff. The
2-dimensional Euclidean sphere S2 is a coset space which is not
homeomorphic to any topological group. (A space X is called
homogeneous if for each pair x , y of points in X there exists a
homeomorphism h of X onto itself such that h(x) = y). On the
other hand, there exists a homogeneous compact Hausdorff space
X such that X is not homeomorphic to any coset space [5]. A
space X is said to be strongly locally homogeneous if for each
x ∈ X and every open neighbourhood U of x , there exists an open
neighbourhood V of x such that x ∈ V ⊂ U and, for every z ∈ V ,
there exists a homeomorphism h of X onto X such that h(x) = z
and h(y) = y , for each y ∈ X \ V .



It was proved by R.L. Ford in [3] that if a zero-dimensional
T1-space X is homogeneous, then it is strongly locally
homogeneous. This fact was used to show that every homogeneous
zero-dimensional compact Hausdorff space X can be represented
as a coset space of a topological group (see Theorem 3.5.15 in
[1][Theorem 3.5.15]). In particular, the two arrows compactum A2

[4][3.10.C] is a coset space. However, A2 is first-countable,
compact, and non-metrizable. Therefore, A2 is not dyadic. Recall
in that every compact topological group is dyadic and every
first-countable topological group is metrizable.



In this talk, coset spaces and remainders of coset spaces G/H are
considered under the assumption that H is compact. “A space”
always stands for “a Tychonoff topological space”. A remainder of
a space X is the subspace bX \ X of a compactification bX .
Paracompact p-spaces are preimages of metrizable spaces under
perfect mappings. A mapping is perfect if it is continuous, closed,
and all fibers are compact. A Lindelöf p-space is a preimage of a
separable metrizable space under a perfect mapping. Lindelöf
Σ-spaces are continuous images of Lindelöf p-spaces. A space X is
of point-countable type if each x ∈ X is contained in a compact
subspace F of X with a countable base of open neighbourhoods in
X .



B.A. Efimov has shown that every closed Gδ-subset of any
compact topological group is a dyadic compactum. M.M.Choban
improved this result: every compact Gδ-subset of a topological
group is dyadic [3]. Assume that X = G/H is a coset space where
the subgroup H is compact, and let F be a compact Gδ-subset of
X . The natural mapping g of G onto X = G/H is perfect, since H
is compact. Therefore, the preimage of F under g is a compact
Gδ-subset P of G . Since G is a topological group, it follows that P
is dyadic. Hence, F is dyadic as well. Thus, the next theorem
holds:

Theorem A

Suppose that G is a topological group, H is a compact subgroup
of G , and F is a compact Gδ-subspace of the coset space G/H.
Then F is a dyadic compactum.



Efimov’s Theorem mentioned above cannot be extended to
compact coset spaces: to see this, just take the two arrows
compactum.

Theorem B

Suppose that G is a topological group, H is a compact subgroup
of G , and U is an open subset of the coset space G/H such that U
is compact. Then U is a dyadic compactum.

Another deep theorem on topological properties of topological
groups was proved by M.G. Tkachenko: The Souslin number of
any σ-compact group is countable. Later this theorem was
extended by V.V. Uspenskiy to Lindelöf Σ-groups [1]. Below this
result is extended to coset spaces with compact fibers.

Theorem C

Suppose that X = G/H is a coset space such that the subgroup H
is compact and X contains a dense Lindelöf Σ-subspace Z . Then
the Souslin number of X is countable.

A similar result holds for the Gδ-cellularity.



The product of any family of pseudocompact topological groups is
pseudocompact (Comfort and Ross). Below we use the following
generalization of the theorem just mentioned:

Proposition D

If X is the topological product of a family {Xα : α ∈ A} of
pseudocompact topological spaces Xα such that Xα is an image of
a topological group Gα under an open perfect mapping hα, for
each α ∈ A. Then X is also pseudocompact.

Corollary E

If X is the topological product of a family {Xα : α ∈ A} of
pseudocompact coset spaces Xα = Gα/Hα where Hα is a compact
subgroup of a topological group Gα, for each α ∈ A. Then X is
also pseudocompact.



It is consistent with ZFC that if a countable topological group G is
a Fréchet-Urysohn space, then G is metrizable. Let us show that
this theorem can be partially extended to coset spaces with
compact fibers.

Theorem F

Suppose that X = G/H is a coset space where the group G is
countable, H is compact, and the space X is Fréchet-Urysohn.
Then it is consistent with ZFC that X is metrizable.



Problem 1

Is it true that if a coset space G/H of a countable topological
group G is a Fréchet-Urysohn space, then it is consistent that
G/H is metrizable?

Problem 2

Suppose that G is a topological group with a countable network,
and X = G/H is a countable coset space where H is a compact
subgroup of G . Then is it consistent with ZFC that X and G are
metrizable?

Problem 3

Suppose that G is a topological group and X = G/H is a
countable coset space where H is a compact subgroup of G . Then
is it consistent with ZFC that X is metrizable?



The next theorem extends a well-known result of B.A. Pasynkov on
topological groups (see [1] for details) to arbitrary coset spaces
with compact fibers.

Theorem F

If X = G/H is a coset space where G is a topological group and H
is a compact subgroup of G , and X contains a nonempty compact
subspace with a countable base of open neighbourhoods in X , then
X is a paracompact p-space.



Problem 4

Is every locally paracompact coset space G/H paracompact?

The answer to Problem 4 is positive when H is compact.

Theorem G

Suppose that G is a topological group and H is a compact
subgroup of G such that the coset space G/H is locally
paracompact (locally Čech-complete, locally Dieudonné complete).
Then the coset space G/H is paracompact (Čech-complete,
Dieudonné complete, respectively).



A space Y is called charming if it has a Lindelöf Σ-subspace Z
such that Y \U is a Lindelöf Σ-space, for any open neighbourhood
U of Z in Y [1]. Every charming space is Lindelöf. A space X is
metric-friendly if there exists a σ-compact subspace Y of X such
that X \ U is a Lindelöf p-space, for every open neighbourhood U
of Y in X , and the following two conditions are satisfied:
m1) For every countable subset A of X , the closure of A in X is a
Lindelöf p-space.
m2) For every subset A of X such that |A| ≤ 2ω, the closure of A
in X is a Lindelöf Σ-space.
The next fact can be extracted from [1] and [2].

Theorem H

Every remainder of any paracompact p-space (in particular, any
remainder of a metrizable space) is metric-friendly.

Proposition I

Suppose that f is a perfect mapping of a space X onto a space Y .
Then X is metric-friendly if and only if Y is metric-friendly.



Problem 5

Suppose that G is a topological group, and let H be a compact
subgroup of G . Then is it true that dim(G/H) ≤ dimG? Is it true
that ind(G/H) ≤ indG?

It has been established in [5] that every remainder of any
topological group is either pseudocompact or Lindelöf. This
theorem is extended below to compactly-fibered coset spaces.

Proposition J

Suppose that X is a space such that either each remainder of X is
Lindelöf, or each remainder of X is pseudocompact. Then every
space Y which is an image of X under a perfect mapping also
satisfies this condition: either each remainder of Y is Lindelöf, or
each remainder of Y is pseudocompact.



Theorem K

Suppose that X is a compactly-fibered coset space, and
Y = bX \ X is a remainder of X in some compactification bX of
X . Then the following conditions are equivalent:
1) Y is σ-metacompact;
2) Y is metacompact;
3)Y is paracompact;
4) Y is paralindelöf;
5) Y is Dieudonné complete;
6) Y is Hewitt-Nachbin-complete;
7) Y is Lindelöf;
8) Y is charming;
9) Y is metric-friendly.

The proof is based on the following fact:

Proposition L

Suppose that X is a compactly-fibered coset space with a Lindelöf
remainder Y . Then Y is a metric-friendly space.



Thus, we have arrived at the following Dichotomy Theorem for
compactly-fibered coset spaces:

Theorem M

For every compactly-fibered coset space X , either each remainder
of X is metric-friendly, and X is a paracompact p-space, or every
remainder of X is pseudocompact.



Theorem N

If the weight w(X ) of a compactly-fibered coset space X is not
greater than 2ω, then either each remainder Y of X is a Lindeĺ’of
Σ-space and X is a paracompact p-space, or every remainder of X
is pseudocompact.

Corollary O

For every topological group G, either each remainder of G is
metric-friendly and G is a paracompact p-space, or every
remainder of G is pseudocompact.

Corollary P

If the weight w(G ) of a topological group is not greater than 2ω,
then either each remainder Y of G is a Lindelöf Σ-space and G is a
paracompact p-space, or every remainder of G is pseudocompact.



A π-base for a space X at a subset F of X is a family γ of
non-empty open subsets of X such that every open neighbourhood
of F contains at least one element of γ. The next statement
improves a result in [5].

Lemma CM

Suppose that G is a topological group with a non-empty compact
subspace F of G such that G has a countable π-base at F . Then:
(i) There exists a compact subset P of the set FF−1 such that
e ∈ P and P has a countable base of open neighbourhoods in G .
(ii) Every remainder of G is a metric-friendly space, and G is a
paracompact p-space.



Theorem R

Suppose that X is a compactly-fibered non-locally compact coset
space with a remainder Y such that at least one of the following
two conditions holds:
i1) The π-character of the space Y is countable at each y ∈ Y ,
and the space Y is not countably compact;
i2) The π-character of the space X (at some point of X ) is
countable.
Then X is metrizable, and Y is metric-friendly.



Proof.

Fix a topological group G , a compact subgroup H of G , and the
quotient mapping q : G → G/H such that X = G/H. Then q is
an open perfect mapping, and q can be extended to a perfect
mapping f : βG → bX , where bX is a compactification of X such
that Y = bX \ X . Clearly, X and Y are nowhere locally compact.
Therefore, X and Y are dense in bX .
Case 1. Assume that condition i1) holds. We will show that then
i2) also holds.

Since Y is not countably compact, there exists an infinite
countable discrete subspace A of Y which is closed in Y . Then A
accumulates to some point b ∈ X . Clearly, bX has a countable
π-base at each point of Y . Therefore, we can fix a countable
π-base Pa at each a ∈ A. The family ∪{Pa : a ∈ A} is a
countable π-base for bX at the point b. Taking into account that
X is dense in bX , we conclude that there exists a countable π-base
for X at b. Thus, condition i2) holds, and it is enough to consider
this case:



Case 2. Condition i2) holds.

The space X is homogeneous. Therefore, we can fix a countable
π-base η = {Vn : n ∈ ω} for X at e. Since the map q is perfect,
the family ξ = {q−1(Vn) ∩ G : n ∈ ω} is a countable π-base for G
at the compact subset q−1(e) of G . But q−1(e) is the subgroup H
of G . Therefore, by Lemma CM, there exists a compact subset P
of HH−1 such that e ∈ P and P has a countable base of open
neighbourhoods in G . Using a standard obvious construction, we
obtain a closed subgroup H0 of G such that H0 ⊂ P and H0 has a
countable base of open neighbourhoods in G . Then we have:
H0 ⊂ P ⊂ HH−1 = H, that is, H0 ⊂ H. The coset space G/H0 is
metrizable, since H0 is compact and G/H0 is first-countable (see
[4] where it is shown that every first-countable compactly-fibered
coset space is metrizable). Clearly, there is a natural continuous
mapping s of G/H0 onto G/H such that q = sq0, where q0 is the
natural quotient mapping of G onto G/H0. The mapping s is
perfect, since q and q0 are perfect. Therefore, the space X = G/H
is metrizable, since G/H0 is metrizable. Hence, Y is
metric-friendly.



The above statement generalizes Kristensen’s Theorem used in its
proof.

Theorem S

Suppose that X is a compactly-fibered non-locally compact coset
space with a remainder Y such that the space Y has a countable
π-base (in itself). Then X is separable and metrizable, and Y is a
Lindelöf p-space.

Theorem T

Suppose that X = G/H is a compactly-fibered coset space with a
compactification bX such that the tightness of bX is countable.
Then X is metrizable.

In the above theorem, we cannot claim that X must be also
separable. Indeed, an uncountable discrete topological group X
can be represented as a dense subspace of an Eberlein compactum:
just take the Alexandroff compactification of the discrete space X .



Theorem Q

Suppose that X is a compactly-fibered non-locally compact coset
space with a remainder Y such that Y has a Gδ-diagonal. Then X
and Y are separable and metrizable.

Proof.

Claim 1. Y is not countably compact.

Indeed, otherwise Y is metrizable and compact, by Chaber’s
Theorem [4]. This is a contradiction, since Y is not locally
compact.
By the Dichotomy Theorem, either each remainder of X is
charming and X is a paracompact p-space, or every remainder of
X is pseudocompact.



Case 1. Y is charming and X is a paracompact p-space. Then Y
has a countable network, since every charming space with a
Gδ-diagonal does (see [1]). Therefore, the Souslin number of X is
countable, since X and Y are both dense in bX . Since X is also a
paracompact p-space, it follows that X is a Lindelöf p-space.
Therefore, Y is a Lindelöf p-space, as it was shown in [4]. Since Y
has a countable network, we conclude that Y has a countable base
[2]. Now the metrization Theorem obtained above implies that X
is metrizable. Hence, X is separable, since X is Lindelöf.
Case 2. Y is pseudocompact. Since Y is also a space with a
Gδ-diagonal, it follows that Y is first-countable. By Claim 1, Y is
not countably compact. Now it follows from the metrization
Theorem above that X is metrizable. Hence, the remainder Y is
charming [1]. Since Y is also pseudocompact, we conclude that Y
is compact and hence, X is locally compact, a contradiction.
Thus, case 2 is impossible, and therefore, X and Y are separable
and metrizable.



Theorem U

Suppose that X is a compactly-fibered non-locally compact coset
space with a remainder Y such that Y has a point-countable base.
Then X and Y are separable and metrizable.

Proof.

It is enough to consider the following two cases.
Case 1. Y is not countably compact. Then it X is metrizable and
Y is metric-friendly. In particular, Y is Lindelöf. Since Y is also
first-countable, it follows that |Y | ≤ 2ω. Since Y is metric-friendly,
we conclude that Y is a Lindelöf Σ-space. However, every Lindelöf
Σ-space with a point-countable base has a countable base.
Therefore, the Souslin number of X is countable. Hence X is
separable, since X is metrizable. Thus, both X and Y are
separable and metrizable.
Case 2. Y is countably compact. Then Y is a metrizable
compactum, by a well-known Theorem of A.S. Mischenko [4]. We
arrived at a contradiction.



Theorem V

Suppose that X is a compactly-fibered non-locally compact coset
space with a normal symmetrizable remainder Y . Then X and Y
are separable and metrizable.

Proof.

Clearly, it is enough to consider the following two cases.
Case 1. Y is pseudocompact. Then Y is countably compact, since
it is normal. Since Y is symmetrizable, it follows that Y is
compact, by a theorem of S.J. Nedev [6]. Hence, X is locally
compact, a contradiction. Thus, Case 1 is impossible.
Case 2. Y is Lindelöf. Then Y is hereditarily Lindelöf, by a
theorem of Nedev [6]. Hence, Y is perfect, and the topological
group X is separable and metrizable, by a theorem in [5]. Then Y
is a Lindelöf p-space [3]. Since Y is symmetrizable, it follows that
Y is separable and metrizable.



Problem 6

Can the assumption that Y is normal be dropped in the last
theorem?
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