Preliminaries	Symbolics	Construction	Further research

Planar embeddings of unimodal inverse limit spaces

Ana Anušić University of Zagreb, Croatia

Coauthors: Henk Bruin, Jernej Činč (Vienna)

Toposym, July 25-29 2016 Prague

1/19

Preliminaries ●000000	Symbolics 00	Construction 000000	Further research 00
Unimodal map			

Continuous map $f: [0, 1] \rightarrow [0, 1]$ is called *unimodal* if there exists a unique *critical point* c such that $f|_{[0,c)}$ is strictly increasing, $f|_{(c,1]}$ is strictly decreasing and f(0) = f(1) = 0.

Prototype - tent map family $\{T_s : s \in [0,2]\}$

$$T_s(x) := \begin{cases} sx, x \in [0, 1/2] \\ s(1-x), x \in [1/2, 1]. \end{cases}$$

For unimodal map T define *inverse limit space* as

$$X := \varprojlim([0,1],T) := \{(\ldots,x_{-2},x_{-1},x_0) : x_i \in [0,1], T(x_{i-1}) = x_i\}$$

equipped with the topology of the Hilbert cube.

Preliminaries	Symbolics	Construction	Further research
000000			

Planar embeddings of chainable continua

Continuum is a compact, connected metric space.

A *chain* is a finite collection of open sets $C := {\ell_i}_{i=1}^n$ such that the *links* ℓ_i satisfy $\ell_i \cap \ell_j \neq \emptyset$ if and only if $|i - j| \leq 1$.

Chain is called ε -chain if the links are of diameter less than ε .

Continuum is *chainable* if it can be covered by an ε -chain for every $\varepsilon > 0$.

Theorem (R. H. Bing 1951.)

Every chainable continuum can be embedded in the plane.

Theorem (J. R. Isbell, 1959.)

Continuum is chainable iff it is inverse limit of a sequence of arcs.

Preliminaries	Symbolics	Construction	Further research
00●0000	00	000000	

Explicit construction of planar embeddings of UILs

- Brucks and Diamond (1995) planar embeddings using symbolic description of UILs
- Bruin (1999) embeddings are constructed such that the shift homeomorphism extends to a Lipschitz map on ℝ². (Barge, Martin, 1990., Boyland, de Carvalho, Hall 2012.)

Shift homeomorphism $\sigma: X \to X$, $\sigma((\dots, x_0)) := (\dots, x_0, T(x_0))$

Question(s) (Boyland 2015.)

Can a complicated X be embedded in \mathbb{R}^2 in multiple ways? YES! Such that the shift-homeomorphism can be continuously extended to the plane? OPEN!

Equivalence of planar embeddings

Definition

Denote two planar embeddings of X by $g_1: X \to E_1 \subset \mathbb{R}^2$ and $g_2: X \to E_2 \subset \mathbb{R}^2$. We say that g_1 and g_2 are equivalent embeddings if there exists a homeomorphism $h: E_1 \to E_2$ which can be extended to a homeomorphism of the plane.

Definition

A point $a \in X \subset \mathbb{R}^2$ is accessible (i.e., from the complement of X) if there exists an arc $A = [x, y] \subset \mathbb{R}^2$ such that a = x and $A \cap X = \{a\}$. We say that a composant $\mathcal{U} \subset X$ is accessible, if \mathcal{U} contains an accessible point.

Preliminaries	Symbolics	Construction	Further research
0000000			

Knaster continuum K - full unimodal map

- Mayer (1983) uncountably many non-equivalent planar embeddings of K with the same prime end structure and same set of accessible points.
- Mahavier (1989) for every composant U ⊂ K there exists a planar embedding of K such that each point of U is accessible
- Schwartz (1992, PhD thesis) uncountably many non-equivalent planar embeddings of K
- D
 pbski & Tymchatyn (1993) study of accessibility in generalized Knaster continua

Preliminaries 00000●0 Symbolics

Construction

Further research

Preliminaries 000000●	Symbolics 00	Construction 000000	Further research
Results			

For every (*not renormalizable, no wandering intervals*) unimodal map we obtain uncountably many embeddings by making an arbitrary point accessible.

Theorem (A., Bruin, Činč, 2016)

For every point $a \in X$ there exists an embedding of X in the plane such that a is accessible.

Every homeomorphism $h: X \to X$ is isotopic to σ^R for some $R \in \mathbb{Z}$ (Bruin & Štimac, 2012).

Corollary

There are uncountably many non-equivalent embeddings of X in the plane.

Preliminaries	Symbolics	Construction	Further research
0000000	●○	000000	00
Symbolic descrip	tion		

Itinerary of a point $x \in [0,1]$ is $I(x) :=
u_0(x)
u_1(x)\dots$, where

$$u_i(x) := \left\{ egin{array}{cc} 0, & T^i(x) \in [0,c], \ 1, & T^i(x) \in [c,1]. \end{array}
ight.$$

The kneading sequence is $\nu = I(T(c)) = c_1 c_2 c_3 \dots$ We say that a sequence $(s_i)_{i\geq 0}$ is admissible if it is realized as an itinerary of some point $x \in [0, 1]$ Define $\sum_{adm} := \{(s_i)_{i\in\mathbb{Z}} : s_k s_{k+1} \dots$ admissible for every $k \in \mathbb{Z}\}$. Then $X \simeq \sum_{adm} / \sim$, where $s \sim t \Leftrightarrow s_i = t_i$ for every $i \in \mathbb{Z}$, or if there exists $k \in \mathbb{Z}$ such that $s_i = t_i$ for all $i \neq k$ but $s_k \neq t_k$ and $s_{k+1}s_{k+2} \dots = t_{k+1}t_{k+2} \dots = \nu$. Topology on the sequence space: $d((s_i)_{i\in\mathbb{Z}}, (t_i)_{i\in\mathbb{Z}}) := \sum_{i\in\mathbb{Z}} \frac{|s_i - t_i|}{2^{|i|}}$.

Preliminaries 0000000	Symbolics ⊙●	Construction 000000	Further research 00
Basic arc	S		
Let	$=\dots s_{-2}s_{-1}.\in\{0,1\}^{-\mathbb{N}}$ be ery finite subword is admiss c (may be degenerate) is	an admissible left-infir ible).	nite sequence
	$A(\overleftarrow{s}) := \{x \in X : u$	$v_i(x) = s_i, \forall i < 0\} \subset X$	
$\tau_L(\overleftarrow{s})$:	$= \sup\{n > 1 : s_{-(n-1)} \dots s_{-n}$	$c_{-1} = c_1 c_2 \dots c_{n-1}, \#_1(c_{n-1})$	$c_1 \dots c_{n-1}$) odd}
$ au_R(\overleftarrow{s})$:	$= \sup\{n \ge 1 : s_{-(n-1)} \dots s_n\}$	$c_{-1} = c_1 c_2 \dots c_{n-1}, \#_1($	$c_1 \ldots c_{n-1}$) even},
where #	$a_1(a_1 \dots a_n)$ is a number of	ones in a word $a_1 \dots a_n$	$n \subset \{0,1\}^n$
Lemma	(Bruin, 1999.)		
Let $\overleftarrow{s} \in$	$\{0,1\}^{-\mathbb{N}}$ be admissible su $\pi_0(A(\stackrel{\leftarrow}{5})) = [T^{\tau}]$	where the transformation $\tau_L(\overleftarrow{s}), \tau_R(\overleftarrow{s})$	$<\infty$. Then
If $\overleftarrow{t} \in \cdot$	$\{0,1\}^{-\mathbb{N}}$ is another admissi	ble left-infinite sequenc	e such that
$s_i = t_i f$	for all $i < 0$ except for $i = -$	$-\tau_R(\overleftarrow{s}) = -\tau_R(\overleftarrow{t}) (o$	r
$T = -\tau_L$ boundar	$(s) = -\tau_L(t))$, then A(s) ry point.	5) and A(t) have a co	ommon
			· · · · · · · · · · · · · · · · ·

10/19

Idea: draw every basic arc as horizontal arc in the plane, join the identified points by semi-circles. Horizontal arcs must be arranged such that semi-circles do not intersect and respecting the metric on symbol sequences!

Preliminaries	Symbolics	Construction	Further research
0000000	00	0●0000	00

Ordering on basic arcs

Definition (Ordering on basic arcs wrt L)

Let $L = \ldots I_{-2}I_{-1}$. be an admissible left-infinite sequence. Let $\overleftarrow{s}, \overleftarrow{t} \in \{0, 1\}^{-\mathbb{N}}$ and let $k \in \mathbb{N}$ be the smallest natural number such that $s_{-k} \neq t_{-k}$. Then $\overleftarrow{s} \prec_L \overleftarrow{t} \Leftrightarrow \begin{cases} t_{-k} = I_{-k} \text{ and } \#_1(s_{-(k-1)} \ldots s_{-1}) - \#_1(I_{-(k-1)} \ldots I_{-1}) \text{ even, or } \\ s_{-k} = I_{-k} \text{ and } \#_1(s_{-(k-1)} \ldots s_{-1}) - \#_1(I_{-(k-1)} \ldots I_{-1}) \text{ odd,} \end{cases}$ where $\#_1(a_1 \ldots a_n)$ is a number of ones in a word $a_1 \ldots a_n \subset \{0, 1\}^n$.

Let
$$\overleftarrow{s} \in \{0,1\}^{\mathbb{N}}$$
 be an admissible left-infinite sequence. Define
 $\psi_L : \{0,1\}^{-\mathbb{N}} \to C$ as
 $\psi_L(\overleftarrow{s}) := \sum_{i=1}^{\infty} (-1)^{\#_1(l_{-i}\dots l_{-1}) - \#_1(s_{-i}\dots s_{-1})} 3^{-i} + \frac{1}{2},$

Note that $\psi_L(L) = 1$ is the largest point in *C*, where *C* is a middle-third Cantor set in [0, 1].

Preliminaries	Symbolics	Construction	Further research
0000000	00	000000	00
Embedding			

Planar representation of a basic arc A = A(5) is given as $(\pi_0(A), \psi_L(5))$. Corresponding endpoints are joined by a semi-circle.

Figure:
$$\nu = 100110010..., L = 1^{\infty}$$
.

Figure: Embedding of the same arc as in the previous picture, with $L = (101)^{\infty}$.

Assume that $a = (..., a_{-1}, a_0) \in X$ is contained in a basic arc $A = A(... I_{-2}I_{-1})$. Consider the planar representation of X obtained by the ordering making $L = ... I_{-2}I_{-1}$. the largest. The point a is represented as $(a_0, 1)$.

Preliminaries	Symbolics	Construction	Further research
0000000	00	000000	●○
Some accessi	bility results		

An arc-component is called *fully-accessible* if every point in it is accessible.

- arc-component $\mathcal{U} \ni (\dots, 0, 0)$ is always fully-accessible (except in non-standard embeddings of Knaster continuum)
- for every unimodal inverse limit space we have constructed an embedding with exactly 1, 2, and 3 fully-accessible (non-degenerate) arc-components.
- for every $n \in \mathbb{N}$ there exists a chainable indecomposable planar continuum with exactly *n* fully-accessible composants (namely cores of $\nu = (10^{n-2}1)^{\infty}$ in Brucks-Diamond embedding).

Preliminaries 0000000	Symbolics 00	Construction 000000	Further research ⊙●
Further resea	irch		

- In some (recurrent) UILs there exist degenerate arc-components (Barge, Brucks, Diamond, 1996.). What happens if such point is embedded the largest? (We still cannot obtain symbolic representation of such points)
- (Nadler and Quinn 1972.) If X is chainable continuum and x ∈ X is a point, does there exist a planar embedding of X such that x is accessible?
- (Mayer 1982.) Are there uncountably many inequivalent embeddings of every chainable indecomposable continuum (with the same set of accessible points and the same prime end structure?)
- prime ends, Wada channels ...

Preliminaries	Symbolics	Construction	Further research
0000000	00	000000	

Thank you!