Planar embeddings of unimodal inverse limit spaces

Ana Anušić
University of Zagreb, Croatia
Coauthors: Henk Bruin, Jernej Činč (Vienna)

Toposym, July 25-29 2016
Prague

Unimodal map

Continuous map $f:[0,1] \rightarrow[0,1]$ is called unimodal if there exists a unique critical point c such that $\left.f\right|_{[0, c)}$ is strictly increasing, $\left.f\right|_{(c, 1]}$ is strictly decreasing and $f(0)=f(1)=0$.

Prototype - tent map family $\left\{T_{s}: s \in[0,2]\right\}$

$$
T_{s}(x):=\left\{\begin{array}{l}
s x, x \in[0,1 / 2] \\
s(1-x), x \in[1 / 2,1]
\end{array}\right.
$$

For unimodal map T define inverse limit space as

$$
X:=\lim _{\leftrightarrows}([0,1], T):=\left\{\left(\ldots, x_{-2}, x_{-1}, x_{0}\right): x_{i} \in[0,1], T\left(x_{i-1}\right)=x_{i}\right\}
$$

equipped with the topology of the Hilbert cube.

Planar embeddings of chainable continua

Continuum is a compact, connected metric space.
A chain is a finite collection of open sets $\mathcal{C}:=\left\{\ell_{i}\right\}_{i=1}^{n}$ such that the links ℓ_{i} satisfy $\ell_{i} \cap \ell_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$.

Chain is called ε-chain if the links are of diameter less than ε.
Continuum is chainable if it can be covered by an ε-chain for every $\varepsilon>0$.

Theorem (R. H. Bing 1951.)

Every chainable continuum can be embedded in the plane.

Theorem (J. R. Isbell, 1959.)

Continuum is chainable iff it is inverse limit of a sequence of arcs.

Explicit construction of planar embeddings of UILs

- Brucks and Diamond (1995) - planar embeddings using symbolic description of UILs
- Bruin (1999) - embeddings are constructed such that the shift homeomorphism extends to a Lipschitz map on \mathbb{R}^{2}. (Barge, Martin, 1990., Boyland, de Carvalho, Hall 2012.)

Shift homeomorphism $\sigma: X \rightarrow X, \sigma\left(\left(\ldots, x_{0}\right)\right):=\left(\ldots, x_{0}, T\left(x_{0}\right)\right)$

Question(s) (Boyland 2015.)

Can a complicated X be embedded in \mathbb{R}^{2} in multiple ways? YES! Such that the shift-homeomorphism can be continuously extended to the plane? OPEN!

Equivalence of planar embeddings

Definition

Denote two planar embeddings of X by $g_{1}: X \rightarrow E_{1} \subset \mathbb{R}^{2}$ and $g_{2}: X \rightarrow E_{2} \subset \mathbb{R}^{2}$. We say that g_{1} and g_{2} are equivalent embeddings if there exists a homeomorphism $h: E_{1} \rightarrow E_{2}$ which can be extended to a homeomorphism of the plane.

Definition

A point $a \in X \subset \mathbb{R}^{2}$ is accessible (i.e., from the complement of X) if there exists an arc $A=[x, y] \subset \mathbb{R}^{2}$ such that $a=x$ and $A \cap X=\{a\}$. We say that a composant $\mathcal{U} \subset X$ is accessible, if \mathcal{U} contains an accessible point.

Knaster continuum K - full unimodal map

- Mayer (1983) - uncountably many non-equivalent planar embeddings of K with the same prime end structure and same set of accessible points.
- Mahavier (1989) - for every composant $\mathcal{U} \subset K$ there exists a planar embedding of K such that each point of \mathcal{U} is accessible
- Schwartz (1992, PhD thesis) - uncountably many non-equivalent planar embeddings of K
- Débski \& Tymchatyn (1993) - study of accessibility in generalized Knaster continua

Results

For every (not renormalizable, no wandering intervals) unimodal map we obtain uncountably many embeddings by making an arbitrary point accessible.

Theorem (A., Bruin, Činč, 2016)

For every point $a \in X$ there exists an embedding of X in the plane such that a is accessible.

Every homeomorphism $h: X \rightarrow X$ is isotopic to σ^{R} for some $R \in \mathbb{Z}$ (Bruin \& Štimac, 2012).

Corollary

There are uncountably many non-equivalent embeddings of X in the plane.

Symbolic description

Itinerary of a point $x \in[0,1]$ is $I(x):=\nu_{0}(x) \nu_{1}(x) \ldots$, where

$$
\nu_{i}(x):= \begin{cases}0, & T^{i}(x) \in[0, c], \\ 1, & T^{i}(x) \in[c, 1] .\end{cases}
$$

The kneading sequence is $\nu=I(T(c))=c_{1} c_{2} c_{3} \ldots$.
We say that a sequence $\left(s_{i}\right)_{i \geq 0}$ is admissible if it is realized as an itinerary of some point $x \in[0,1]$
Define $\Sigma_{\text {adm }}:=\left\{\left(s_{i}\right)_{i \in \mathbb{Z}}: s_{k} s_{k+1} \ldots\right.$ admissible for every $\left.k \in \mathbb{Z}\right\}$. Then $X \simeq \Sigma_{a d m} / \sim$, where $s \sim t \Leftrightarrow s_{i}=t_{i}$ for every $i \in \mathbb{Z}$, or if there exists $k \in \mathbb{Z}$ such that $s_{i}=t_{i}$ for all $i \neq k$ but $s_{k} \neq t_{k}$ and $s_{k+1} s_{k+2} \ldots=t_{k+1} t_{k+2} \ldots=\nu$.
Topology on the sequence space: $d\left(\left(s_{i}\right)_{i \in \mathbb{Z}},\left(t_{i}\right)_{i \in \mathbb{Z}}\right):=\sum_{i \in \mathbb{Z}} \frac{\left|s_{i}-t_{i}\right|}{2^{i \mid}}$.

Basic arcs

Let $\overleftarrow{s}=\ldots s_{-2} s_{-1} . \in\{0,1\}^{-\mathbb{N}}$ be an admissible left-infinite sequence (i.e., every finite subword is admissible).

Basic arc (may be degenerate) is

$$
A(\overleftarrow{s}):=\left\{x \in X: \nu_{i}(x)=s_{i}, \forall i<0\right\} \subset X
$$

$\tau_{L}(\overleftarrow{s}):=\sup \left\{n>1: s_{-(n-1)} \ldots s_{-1}=c_{1} c_{2} \ldots c_{n-1}, \#_{1}\left(c_{1} \ldots c_{n-1}\right)\right.$ odd $\}$
$\tau_{R}(\overleftarrow{s}):=\sup \left\{n \geq 1: s_{-(n-1)} \ldots s_{-1}=c_{1} c_{2} \ldots c_{n-1}, \#_{1}\left(c_{1} \ldots c_{n-1}\right)\right.$ even $\}$,
where $\#_{1}\left(a_{1} \ldots a_{n}\right)$ is a number of ones in a word $a_{1} \ldots a_{n} \subset\{0,1\}^{n}$

Lemma (Bruin, 1999.)

Let $\overleftarrow{s} \in\{0,1\}^{-\mathbb{N}}$ be admissible such that $\tau_{L}(\overleftarrow{s}), \tau_{R}(\overleftarrow{s})<\infty$. Then

$$
\pi_{0}(A(\overleftarrow{s}))=\left[T^{\tau_{l}(\overleftarrow{s})}(c), T^{\tau_{R}(\overleftarrow{s})}(c)\right]
$$

If $\overleftarrow{t} \in\{0,1\}^{-\mathbb{N}}$ is another admissible left-infinite sequence such that $s_{i}=t_{i}$ for all $i<0$ except for $i=-\tau_{R}(\overleftarrow{s})=-\tau_{R}(\overleftarrow{t})$ (or $\left.i=-\tau_{L}(\overleftarrow{s})=-\tau_{L}(\overleftarrow{t})\right)$, then $A(\overleftarrow{s})$ and $A(\overleftarrow{t})$ have a common boundary point.

Planar representation

Idea: draw every basic arc as horizontal arc in the plane, join the identified points by semi-circles. Horizontal arcs must be arranged such that semi-circles do not intersect and respecting the metric on symbol sequences!

Ordering on basic arcs

Definition (Ordering on basic arcs wrt L)

Let $L=\ldots I_{-2} I_{-1}$. be an admissible left-infinite sequence.
Let $\overleftarrow{s}, \overleftarrow{t} \in\{0,1\}^{-\mathbb{N}}$ and let $k \in \mathbb{N}$ be the smallest natural number such that $s_{-k} \neq t_{-k}$. Then
$\overleftarrow{s} \prec_{L} \overleftarrow{t} \Leftrightarrow\left\{\begin{array}{l}t_{-k}=I_{-k} \text { and } \#_{1}\left(s_{-(k-1)} \ldots s_{-1}\right)-\#_{1}\left(I_{-(k-1)} \ldots I_{-1}\right) \text { even, or } \\ s_{-k}=I_{-k} \text { and } \#_{1}\left(s_{-(k-1)} \ldots s_{-1}\right)-\#_{1}\left(I_{-(k-1)} \ldots I_{-1}\right) \text { odd, }\end{array}\right.$ where $\#_{1}\left(a_{1} \ldots a_{n}\right)$ is a number of ones in a word $a_{1} \ldots a_{n} \subset\{0,1\}^{n}$.

Let $\overleftarrow{s} \in\{0,1\}^{\mathbb{N}}$ be an admissible left-infinite sequence. Define $\psi_{L}:\{0,1\}^{-\mathbb{N}} \rightarrow C$ as

$$
\psi_{L}(\overleftarrow{s}):=\sum_{i=1}^{\infty}(-1)^{\#_{1}\left(I_{-i} \ldots I_{-1}\right)-\#_{1}\left(s_{-i} \ldots s_{-1}\right)} 3^{-i}+\frac{1}{2}
$$

Note that $\psi_{L}(L)=1$ is the largest point in C, where C is a middle-third Cantor set in $[0,1]$.

Figure: (a) $L=\ldots 111$. and (b) $L=\ldots 101$.

Embedding

Planar representation of a basic $\operatorname{arc} A=A(\overleftarrow{s})$ is given as $\left(\pi_{0}(A), \psi_{L}(\overleftarrow{s})\right)$. Corresponding endpoints are joined by a semi-circle.

Figure: $\nu=100110010 \ldots, L=1^{\infty}$.

Figure: Embedding of the same arc as in the previous picture, with $L=(101)^{\infty}$.

Proof of the main theorem

Assume that $a=\left(\ldots, a_{-1}, a_{0}\right) \in X$ is contained in a basic arc $A=A\left(\ldots I_{-2} I_{-1}\right)$. Consider the planar representation of X obtained by the ordering making $L=\ldots I_{-2} I_{-1}$. the largest. The point a is represented as $\left(a_{0}, 1\right)$.

Some accessibility results

An arc-component is called fully-accessible if every point in it is accessible.

- arc-component $\mathcal{U} \ni(\ldots, 0,0)$ is always fully-accessible (except in non-standard embeddings of Knaster continuum)
- for every unimodal inverse limit space we have constructed an embedding with exactly 1,2 , and 3 fully-accessible (non-degenerate) arc-components.
- for every $n \in \mathbb{N}$ there exists a chainable indecomposable planar continuum with exactly n fully-accessible composants (namely cores of $\nu=\left(10^{n-2} 1\right)^{\infty}$ in Brucks-Diamond embedding).

Further research

- In some (recurrent) UILs there exist degenerate arc-components (Barge, Brucks, Diamond, 1996.). What happens if such point is embedded the largest? (We still cannot obtain symbolic representation of such points)
- (Nadler and Quinn 1972.) If X is chainable continuum and $x \in X$ is a point, does there exist a planar embedding of X such that x is accessible?
- (Mayer 1982.) Are there uncountably many inequivalent embeddings of every chainable indecomposable continuum (with the same set of accessible points and the same prime end structure?)
- prime ends, Wada channels ...

Thank you!

