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The Gromov-Hausdorff distance

Definition
Let (M,d) be a metric space. For two subsets A, B ⊂ M, the Hausdorff
distance dH(A,B) is defined as follows:

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b,A)}.

2M denotes the set of all nonempty compact subsets of M.

(2M ,dH) is a metric space.
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The Gromov-Hausdorff distance dGH is a useful tool for studying
topological properties of families of metric spaces. M. Gromov first
introduced the notion of Gromov-Hausdorff distance in his ICM 1979
address in Helsinki on synthetic Riemannian geometry.

Two years later dGH appeared in the book M.Gromov [3]. It turns the
set GH of all isometry classes of compact metric spaces into a metric
space.

For two compact metric spaces X and Y the number dGH(X ,Y ) is
defined to be the infimum of all Hausdorff distances dH(i(X ), j(Y )) for
all metric spaces M and all isometric embeddings i : X ↪→ M and
j : Y ↪→ M.

dGH(X ,Y ) = inf{dH(i(X ), j(Y )) | i : X ↪→ M, j : Y ↪→ M}.
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Clearly, the Gromov-Hausdorff distance between isometric spaces is
zero; it is a metric on the family GH of isometry classes of compact
metric spaces. The metric “space” (GH, dGH) is called the
Gromov-Hausdorff space.
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Urysohn universal metric space

Theorem (Urysohn, 1925)
There exists, up to isometry, unique metric space U satisfying the
following properties:

1 U is Polish, i.e., separable and complete,
2 U contains an isometric copy of every separable metric space,
3 U is ultrahomogeneous, i.e., any isometry f : A→ B between two

finite subspaces of U, extends to an isometry F : U→ U.

U is called the Urysohn universal metric space.

Theorem (Huhunaishvili, 1955)
The property (3) holds true for compact isometric subsets A ⊂ U, B⊂U.
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The Urysohn space U was introdused by Pavel S. Urysohn shortly
before his tragic death in 1924, and his results were prepared for
publication by his friend Pavel S. Alexandroff and published
posthumously in 1925 and 1927.

After Urysohn’s result was published, S. Banach and S. Mazur proved
that C[0,1] is universal for all separable metric spaces.
But C[0,1] is NOT ultrahomogeneous.
Dually, `2 is ultrahomogeneous, but it is not universal.

Theorem (Berestovsky and Vershik)
The Gromov-Hausdorff distance may be computed by the following
formula:

dGH(X ,Y ) = inf{dH
(
i(X ), j(Y )

)
| i : X ↪→ U, j : Y ↪→ U}

where inf is taken over all isometric embeddings i : X ↪→ U and
j : Y ↪→ U.
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Denote by IsoU the group of all isometries of U.

Theorem (Gromov)

GH ∼= 2U/IsoU (an isometry).

It is a challenging open problem to describe the topological structure of
this metric space.
The talk contributes towards this problem.
It is known that GH is a Polish space. Besides, it is easy to see that
GH is contractible.

However it is not known whether GH is an AR? Is GH∼= `2?
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In this talk we mainly are interested in the following subspaces of GH
denoted by

GH(Rn), n ≥ 1

and called the Gromov-Hausdorff hyperspace of Rn.

Here GH(Rn) is the subspace of GH consisting of the classes [E ] ∈GH
whose representative E is a metric subspace of Rn.
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The Euclidean-Hausdorff distance
For any two compact subsets X ,Y which admit an isometric
embeddings in a Euclidean space Rn, n ≥ 1, define the
Euclidean-Hausdorff distance by the following formula:

dEH(X ,Y ) = inf{dH
(
i(X ), j(Y )

)
| i : X ↪→ Rn, j : Y ↪→ Rn}

where inf is taken over all isometric embeddings i : X ↪→ Rn and
j : Y ↪→ Rn.

Theorem (Well-known)
If X and Y are two isometric subsets of a Euiclidean space Rn, n ≥ 1,
then there exists a Euclidean isometry F : Rn → Rn such that
F (X ) = Y.

Corollary
If X ,Y ⊂ Rn are compact subsets, then

dEH(X ,Y ) = inf{dH
(
X ,F (Y )

)
| F : Rn → Rn is an isometry}

S. Antonyan (UNAM) Hyperspaces in the Gromov-Haisdorff metric July 25-29, 2016 10 / 29



The Euclidean-Hausdorff distance
For any two compact subsets X ,Y which admit an isometric
embeddings in a Euclidean space Rn, n ≥ 1, define the
Euclidean-Hausdorff distance by the following formula:

dEH(X ,Y ) = inf{dH
(
i(X ), j(Y )

)
| i : X ↪→ Rn, j : Y ↪→ Rn}

where inf is taken over all isometric embeddings i : X ↪→ Rn and
j : Y ↪→ Rn.

Theorem (Well-known)
If X and Y are two isometric subsets of a Euiclidean space Rn, n ≥ 1,
then there exists a Euclidean isometry F : Rn → Rn such that
F (X ) = Y.

Corollary
If X ,Y ⊂ Rn are compact subsets, then

dEH(X ,Y ) = inf{dH
(
X ,F (Y )

)
| F : Rn → Rn is an isometry}

S. Antonyan (UNAM) Hyperspaces in the Gromov-Haisdorff metric July 25-29, 2016 10 / 29



The Euclidean-Hausdorff distance
For any two compact subsets X ,Y which admit an isometric
embeddings in a Euclidean space Rn, n ≥ 1, define the
Euclidean-Hausdorff distance by the following formula:

dEH(X ,Y ) = inf{dH
(
i(X ), j(Y )

)
| i : X ↪→ Rn, j : Y ↪→ Rn}

where inf is taken over all isometric embeddings i : X ↪→ Rn and
j : Y ↪→ Rn.

Theorem (Well-known)
If X and Y are two isometric subsets of a Euiclidean space Rn, n ≥ 1,
then there exists a Euclidean isometry F : Rn → Rn such that
F (X ) = Y.

Corollary
If X ,Y ⊂ Rn are compact subsets, then

dEH(X ,Y ) = inf{dH
(
X ,F (Y )

)
| F : Rn → Rn is an isometry}

S. Antonyan (UNAM) Hyperspaces in the Gromov-Haisdorff metric July 25-29, 2016 10 / 29



In other words....

Denote by E(n) = IsoRn the group of isometries of Rn.
The group E(n) acts continuously on 2R

n
:

(g,A) 7→ g(A).

Denote by [X ] = {F (X ) | F ∈ E(n)} - the orbit of an X ∈ 2R
n
. By

2R
n
/E(n)

we denote the orbit space.
Then for [X ], [Y ] ∈ 2R

n

ρ([X ], [Y ]) = inf{dH
(
X ,F (Y )

)
| F ∈ E(n)}

metrizes the orbit space 2R
n
/E(n), and clearly,

ρ([X ], [Y ]) = dEH(X ,Y ).
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Main results

Clearly, dGH ≤ dEH . In general dGH(X ,Y ) may be strictly less than
dEH(X ,Y ).
For instance, take X = {a,b, c} - the vertices of an equilateral triangle
of side lenght 1, and Y = {∗}.

Then dEH(X ,Y ) =
√

3/3 while dGH(X ,Y ) = 1/2.

Theorem

GH(Rn) ∼= 2R
n
/E(n).
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Sketch

2U(Rn) = {A ∈ 2U | ∃ i : A ↪→ Rn}.

f : 2R
n → 2U(Rn)/IsoU = GH(Rn), A 7→ [j(A)],

where j : A ↪→ U is an embedding.

-

A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
��

2Rn 2Rn
/E(n)

GH(Rn) = 2U(Rn)/IsoU

f

p

f̃ (p(A)) = f (A)
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Since dGH ≤ dEH , we infer that

f̃ : 2R
n
/E(n)→ 2U(Rn)/IsoU

is continuous and bijective.

For continuity of the inverse map

f̃−1 : 2U(Rn)/IsoU→ 2R
n
/E(n)

we use the following

Theorem (Memoli)

dEH ≤ Cn ·
√

dGH ,

Thus
f̃ : 2R

n
/E(n)→ 2U(Rn)/IsoU

is a homeomorphism:

GH(Rn) ∼= 2R
n
/E(n).
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Theorem
The action

E(n)y 2R
n

is proper.

Here proper means that for any compact subset K ⊂ 2R
n
, the

transporter

〈K ,K 〉 = {g ∈ E(n) | gK ∩ K 6= ∅}

has compact closure in E(n).

Facts
In a proper G-space each stabilizer Gx = {g ∈ G | gx = x} is
compact.
Every obit G(x) is closed and G(x) ∼=G G/Gx ,
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Definition
Let G be a locally compact group and H ⊂ G a compact subgroup.
Then a subset S ⊂ X of a proper G-space X is a global H-slice of X , if

1 S is H-invariant,

2 S is closed in X ,

3 if gS ∩ S 6= ∅ then g ∈ H
4 G(S) :=

⋃
g∈G

gS = X .

G(S) S gS
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The Chebyshev balls

Theorem (P.L. Chebyshev)
For every compact subset A ⊂ Rn, there is a unique closed ball Ch(A),
called the Chebyshev ball of A, such that A ⊂ Ch(A).
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• If Ch(A) = B(b, r), then we denote ch(A) = b – the Chebyshev
center of A; it belongs to conv A.

• R(A) = r – the Chebyshev radius of A.

Theorem

ch : 2R
n → Rn

is an E(n)-equivariant map, i.e.,

ch(gA) = gch(A), A ∈ 2R
n
, g ∈ E(n).

Corollary

The inverse image T (Rn) := ch−1(0) is a global O(n)-slice for 2R
n
.

Theorem

GH(Rn) = 2R
n
/E(n) ∼= T (Rn)/O(n).
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How to compute T (Rn)/O(n).?
Denote

Ch(n) := {A ∈ 2R
n | Ch(A) = Bn}.
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Proposition
1

T (Rn) ∼=O(n) OCone
(
Ch(n)

)
.

2

T (Rn)/O(n) ∼= OCone
(
Ch(n)/O(n)

)
.

Recall the definition of an open cone:

OCone(X ) = X × [0,∞)/X × {0}.

Proof. f (A) =

{
1

R(A) · A, if R(A) 6= 0
θ, if A = {0}.
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Orbit spaces of Hyperspaces
How to compute the orbit space Ch(n)/O(n)?

Recall that
Ch(n) := {A ∈ 2B

n | Ch(A) = Bn} ⊂ 2B
n
.

Ch(n)/O(n) ⊂ 2B
n
/O(n).

It is in order to mention that studying orbit spaces of hyperspaces goes
back to Jim West (1976) (see [5], [6]).

Theorem (H. Toruńczyk and J. West, 1980)

2SO(2)/SO(2) ∈ AR and 2SO(2)/SO(2) � Q

Theorem (S.A., 2000)

2SO(2)/O(2) ∈ AR and 2SO(2)/O(2) ∼= BM(2) � Q
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Properties of Ch(n)

Theorem
1 Ch(n) is O(n)-AR.
2 Ch(n)/O(n) is an AR.

Theorem
1 Ch(n) ∼= Q := [0,1]∞.
2 Ch(n)/O(n) ∼= Q.
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Theorem

GH(Rn) = 2R
n
/E(n) ∼= Q \ {∗}.

Proof.
One has

2R
n
/E(n) ∼= OCone

(
Ch(n)/O(n)

) ∼= OCone
(
Q
)
.

But, it is well known (T.A. Chapman) that the open cone
OCone(Q) ∼= Q \ {∗}.
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THE END !
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Some ideas of the proof that Ch(n)/O(n) ∼= Q.

Theorem (H. Toruńczyk, 1978)
A a compact metrizable space X is homeomorphic to the Hilbert cube
iff
• X is an AR.
• X satisfies the DDP (Disjoint Discs Property).

Theorem (S. Antonyan, 1988)
Let G be a compact group, X a metrizable G-AR. Then the orbit space
X/G is an AR.
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DDnP and DDP

Definition
Y satisfies DDnP for a given integer n ≥ 0, if each map f : Bn → Y can
be arbitrary closely approximated by two maps f1, f2 : Bn → Y with
disjoint images.

Y satisfies DDP, if it satisfies DDnP for all n ≥ 0.

Proposition
A compact metric ANR space X satisfies the property DDP iff for every
ε > 0, there exist two continuous maps fε,gε : X → X such that:

1 ρ(x , fε(x)) < ε and ρ(x ,gε(x)) < ε for all x ∈ X .
2 Im fε ∩ Im gε = ∅.
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Equivariant DDP
Theorem
For every ε > 0, there exist two continuous O(n)-equivariant maps
fε,gε : Ch(n)→ Ch(n) such that:

1 ρ
(
A, fε(A)

)
< ε and ρ

(
A,gε(A)

)
< ε for all A ∈ Ch(n).

2 Im fε ∩ Im gε = ∅.

• First we define the map fε : Ch(n)→ Ch(n) by

fε(A) = {x ∈ Bn | dist(x ,A) ≤ ε}.

f (A)

A

It is clear that fε(A) ∈ Ch(n) whenever A ∈ Ch(n).
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Proof.
• The second map

gε : Ch(n)→ Ch(n)

is defined in such a way that

Int gε(A) = ∅.

Then Im fε ∩ Im gε = ∅.

Then the maps fε,gε : Ch(n)→ Ch(n) induce

f̃ε, g̃ε : Ch(n)/O(n)→ Ch(n)/O(n)

which are ε-close to the indentity map and have disjoint images.
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THE END !
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