HYPERSPACES OF EUCLIDEAN SPACES IN THE GROMOV-HAUSDORFF METRIC

SERGEY A. ANTONYAN

National University of Mexico
12th Symposium on General Topology and its Relations to Modern Analysis and Algebra July 25-29, 2016

Prague
Czech Republic
(1) The Gromov-Hausdorff distance
(2) The Urysohn space
(3) The Euclidean-Hausdorff distance
(4) Main Results
(5) The Chebyshev balls
(6) Orbit spaces of Hyperspaces
(7) Properties of $\mathrm{Ch}(n)$
(8) Some ideas of the proof
(9) Equivariant DDP

The Gromov-Hausdorff distance

Definition

Let (M, d) be a metric space. For two subsets $A, B \subset M$, the Hausdorff distance $d_{H}(A, B)$ is defined as follows:

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

The Gromov-Hausdorff distance

Definition

Let (M, d) be a metric space. For two subsets $A, B \subset M$, the Hausdorff distance $d_{H}(A, B)$ is defined as follows:

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

2^{M} denotes the set of all nonempty compact subsets of M.

$$
\left(2^{M}, d_{H}\right) \quad \text { is a metric space. }
$$

The Gromov-Hausdorff distance $d_{G H}$ is a useful tool for studying topological properties of families of metric spaces. M. Gromov first introduced the notion of Gromov-Hausdorff distance in his ICM 1979 address in Helsinki on synthetic Riemannian geometry.

Two years later $d_{G H}$ appeared in the book M.Gromov [3]. It turns the set GH of all isometry classes of compact metric spaces into a metric space.

For two compact metric spaces X and Y the number $d_{G H}(X, Y)$ is defined to be the infimum of all Hausdorff distances $d_{H}(i(X), j(Y))$ for all metric spaces M and all isometric embeddings $i: X \hookrightarrow M$ and $j: Y \hookrightarrow M$.

$$
d_{G H}(X, Y)=\inf \left\{d_{H}(i(X), j(Y)) \mid i: X \hookrightarrow M, j: Y \hookrightarrow M\right\} .
$$

Clearly, the Gromov-Hausdorff distance between isometric spaces is zero; it is a metric on the family GH of isometry classes of compact metric spaces. The metric "space" $\left(\mathrm{GH}, \mathrm{d}_{\mathrm{GH}}\right)$ is called the Gromov-Hausdorff space.

Clearly, the Gromov-Hausdorff distance between isometric spaces is zero; it is a metric on the family GH of isometry classes of compact metric spaces. The metric "space" $\left(\mathrm{GH}, \mathrm{d}_{\mathrm{GH}}\right)$ is called the Gromov-Hausdorff space.

Urysohn universal metric space

Theorem (Urysohn, 1925)
There exists, up to isometry, unique metric space \mathbb{U} satisfying the following properties:

Urysohn universal metric space

Theorem (Urysohn, 1925)
There exists, up to isometry, unique metric space \mathbb{U} satisfying the following properties:
(1) \mathbb{U} is Polish, i.e., separable and complete,

Urysohn universal metric space

Theorem (Urysohn, 1925)
There exists, up to isometry, unique metric space \mathbb{U} satisfying the following properties:
(1) \mathbb{U} is Polish, i.e., separable and complete,
(2) \mathbb{U} contains an isometric copy of every separable metric space,

Urysohn universal metric space

Theorem (Urysohn, 1925)
There exists, up to isometry, unique metric space \mathbb{U} satisfying the following properties:
(1) \mathbb{U} is Polish, i.e., separable and complete,
(2) \mathbb{U} contains an isometric copy of every separable metric space,
(3) \mathbb{U} is ultrahomogeneous, i.e., any isometry $f: A \rightarrow B$ between two finite subspaces of \mathbb{U}, extends to an isometry $F: \mathbb{U} \rightarrow \mathbb{U}$.

Urysohn universal metric space

Theorem (Urysohn, 1925)
There exists, up to isometry, unique metric space \mathbb{U} satisfying the following properties:
(1) \mathbb{U} is Polish, i.e., separable and complete,
(2) \mathbb{U} contains an isometric copy of every separable metric space,
(3) \mathbb{U} is ultrahomogeneous, i.e., any isometry $f: A \rightarrow B$ between two finite subspaces of \mathbb{U}, extends to an isometry $F: \mathbb{U} \rightarrow \mathbb{U}$.
\mathbb{U} is called the Urysohn universal metric space.

Urysohn universal metric space

Theorem (Urysohn, 1925)
There exists, up to isometry, unique metric space \mathbb{U} satisfying the following properties:
(1) \mathbb{U} is Polish, i.e., separable and complete,
(2) \mathbb{U} contains an isometric copy of every separable metric space,
(3) \mathbb{U} is ultrahomogeneous, i.e., any isometry $f: A \rightarrow B$ between two finite subspaces of \mathbb{U}, extends to an isometry $F: \mathbb{U} \rightarrow \mathbb{U}$.
\mathbb{U} is called the Urysohn universal metric space.

Theorem (Huhunaishvili, 1955)

The property (3) holds true for compact isometric subsets $A \subset \mathbb{U}, B \subset \mathbb{U}$.

The Urysohn space \mathbb{U} was introdused by Pavel S. Urysohn shortly before his tragic death in 1924, and his results were prepared for publication by his friend Pavel S. Alexandroff and published posthumously in 1925 and 1927.

The Urysohn space \mathbb{U} was introdused by Pavel S. Urysohn shortly before his tragic death in 1924, and his results were prepared for publication by his friend Pavel S. Alexandroff and published posthumously in 1925 and 1927.

After Urysohn's result was published, S. Banach and S. Mazur proved that $C[0,1]$ is universal for all separable metric spaces.

The Urysohn space \mathbb{U} was introdused by Pavel S. Urysohn shortly before his tragic death in 1924, and his results were prepared for publication by his friend Pavel S. Alexandroff and published posthumously in 1925 and 1927.

After Urysohn's result was published, S. Banach and S. Mazur proved that $C[0,1]$ is universal for all separable metric spaces.
But $C[0,1]$ is NOT ultrahomogeneous.

The Urysohn space \mathbb{U} was introdused by Pavel S. Urysohn shortly before his tragic death in 1924, and his results were prepared for publication by his friend Pavel S. Alexandroff and published posthumously in 1925 and 1927.

After Urysohn's result was published, S. Banach and S. Mazur proved that $C[0,1]$ is universal for all separable metric spaces.
But $C[0,1]$ is NOT ultrahomogeneous.
Dually, ℓ_{2} is ultrahomogeneous, but it is not universal.

The Urysohn space \mathbb{U} was introdused by Pavel S. Urysohn shortly before his tragic death in 1924, and his results were prepared for publication by his friend Pavel S. Alexandroff and published posthumously in 1925 and 1927.
After Urysohn's result was published, S. Banach and S. Mazur proved that $C[0,1]$ is universal for all separable metric spaces.
But $C[0,1]$ is NOT ultrahomogeneous.
Dually, ℓ_{2} is ultrahomogeneous, but it is not universal.

Theorem (Berestovsky and Vershik)

The Gromov-Hausdorff distance may be computed by the following formula:

$$
d_{G H}(X, Y)=\inf \left\{d_{H}(i(X), j(Y)) \mid i: X \hookrightarrow \mathbb{U}, j: Y \hookrightarrow \mathbb{U}\right\}
$$

where inf is taken over all isometric embeddings $i: X \hookrightarrow \mathbb{U}$ and $j: Y \hookrightarrow \mathbb{U}$.

Denote by Iso \mathbb{U} the group of all isometries of \mathbb{U}.
Theorem (Gromov)

$$
\left.\mathrm{GH} \cong 2^{\mathbb{U}} / \text { Iso } \mathbb{U} \quad \text { (an isometry }\right) .
$$

Denote by Iso \mathbb{U} the group of all isometries of \mathbb{U}.
Theorem (Gromov)

$$
\mathrm{GH} \cong 2^{\mathbb{U}} / \mathrm{Iso} \mathbb{U} \quad(\text { an isometry }) .
$$

It is a challenging open problem to describe the topological structure of this metric space.

Denote by Iso \mathbb{U} the group of all isometries of \mathbb{U}.
Theorem (Gromov)

$$
\left.\mathrm{GH} \cong 2^{\mathbb{U}} / \text { Iso } \mathbb{U} \quad \text { (an isometry }\right) .
$$

It is a challenging open problem to describe the topological structure of this metric space.
The talk contributes towards this problem.

Denote by Iso \mathbb{U} the group of all isometries of \mathbb{U}.
Theorem (Gromov)

$$
\mathrm{GH} \cong 2^{\mathbb{U}} / \mathrm{Iso} \mathbb{U} \quad(\text { an isometry }) .
$$

It is a challenging open problem to describe the topological structure of this metric space.
The talk contributes towards this problem.
It is known that GH is a Polish space. Besides, it is easy to see that GH is contractible.

Denote by Iso \mathbb{U} the group of all isometries of \mathbb{U}.
Theorem (Gromov)

$$
\left.\mathrm{GH} \cong 2^{\mathbb{U}} / \text { Iso } \mathbb{U} \quad \text { (an isometry }\right) .
$$

It is a challenging open problem to describe the topological structure of this metric space.
The talk contributes towards this problem.
It is known that GH is a Polish space. Besides, it is easy to see that GH is contractible.

However it is not known whether GH is an AR ? Is $\mathrm{GH} \cong \ell_{2}$?

In this talk we mainly are interested in the following subspaces of GH denoted by
$\mathrm{GH}\left(\mathbb{R}^{\mathrm{n}}\right), \mathrm{n} \geq 1$
and called the Gromov-Hausdorff hyperspace of \mathbb{R}^{n}.

In this talk we mainly are interested in the following subspaces of GH denoted by
$\mathrm{GH}\left(\mathbb{R}^{\mathrm{n}}\right), \mathrm{n} \geq 1$
and called the Gromov-Hausdorff hyperspace of \mathbb{R}^{n}.
Here $\mathrm{GH}\left(\mathbb{R}^{\mathrm{n}}\right)$ is the subspace of GH consisting of the classes $[E] \in \mathrm{GH}$ whose representative E is a metric subspace of \mathbb{R}^{n}.

In this talk we mainly are interested in the following subspaces of GH denoted by
$\mathrm{GH}\left(\mathbb{R}^{\mathrm{n}}\right), \mathrm{n} \geq 1$
and called the Gromov-Hausdorff hyperspace of \mathbb{R}^{n}.
Here $\mathrm{GH}\left(\mathbb{R}^{\mathrm{n}}\right)$ is the subspace of GH consisting of the classes $[E] \in \mathrm{GH}$ whose representative E is a metric subspace of \mathbb{R}^{n}.

The Euclidean-Hausdorff distance

 For any two compact subsets X, Y which admit an isometric embeddings in a Euclidean space $\mathbb{R}^{n}, n \geq 1$, define the Euclidean-Hausdorff distance by the following formula:$$
d_{E H}(X, Y)=\inf \left\{d_{H}(i(X), j(Y)) \mid i: X \hookrightarrow \mathbb{R}^{n}, j: Y \hookrightarrow \mathbb{R}^{n}\right\}
$$

where inf is taken over all isometric embeddings $i: X \hookrightarrow \mathbb{R}^{n}$ and $j: Y \hookrightarrow \mathbb{R}^{n}$.

The Euclidean-Hausdorff distance

For any two compact subsets X, Y which admit an isometric embeddings in a Euclidean space $\mathbb{R}^{n}, n \geq 1$, define the Euclidean-Hausdorff distance by the following formula:

$$
d_{E H}(X, Y)=\inf \left\{d_{H}(i(X), j(Y)) \mid i: X \hookrightarrow \mathbb{R}^{n}, j: Y \hookrightarrow \mathbb{R}^{n}\right\}
$$

where inf is taken over all isometric embeddings $i: X \hookrightarrow \mathbb{R}^{n}$ and $j: Y \hookrightarrow \mathbb{R}^{n}$.

Theorem (Well-known)

If X and Y are two isometric subsets of a Euiclidean space $\mathbb{R}^{n}, n \geq 1$, then there exists a Euclidean isometry $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $F(X)=Y$.

The Euclidean-Hausdorff distance

For any two compact subsets X, Y which admit an isometric embeddings in a Euclidean space $\mathbb{R}^{n}, n \geq 1$, define the Euclidean-Hausdorff distance by the following formula:

$$
d_{E H}(X, Y)=\inf \left\{d_{H}(i(X), j(Y)) \mid i: X \hookrightarrow \mathbb{R}^{n}, j: Y \hookrightarrow \mathbb{R}^{n}\right\}
$$

where inf is taken over all isometric embeddings $i: X \hookrightarrow \mathbb{R}^{n}$ and $j: Y \hookrightarrow \mathbb{R}^{n}$.

Theorem (Well-known)

If X and Y are two isometric subsets of a Euiclidean space $\mathbb{R}^{n}, n \geq 1$, then there exists a Euclidean isometry $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $F(X)=Y$.

Corollary

If $X, Y \subset \mathbb{R}^{n}$ are compact subsets, then

$$
d_{E H}(X, Y)=\inf \left\{d_{H}(X, F(Y)) \mid F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { is an isometry }\right\}
$$

In other words....

In other words....
Denote by $E(n)=$ Iso \mathbb{R}^{n} the group of isometries of \mathbb{R}^{n}.

In other words....
Denote by $E(n)=$ Iso \mathbb{R}^{n} the group of isometries of \mathbb{R}^{n}. The group $E(n)$ acts continuously on $2 \mathbb{R}^{n}$:

$$
(g, A) \mapsto g(A)
$$

In other words....
Denote by $E(n)=$ Iso \mathbb{R}^{n} the group of isometries of \mathbb{R}^{n}.
The group $E(n)$ acts continuously on $2^{\mathbb{R}^{n}}$:

$$
(g, A) \mapsto g(A)
$$

Denote by $[X]=\{F(X) \mid F \in E(n)\}$ - the orbit of an $X \in 2^{\mathbb{R}^{n}}$. By

$$
2^{\mathbb{R}^{n}} / E(n)
$$

we denote the orbit space.

In other words....
Denote by $E(n)=$ Iso \mathbb{R}^{n} the group of isometries of \mathbb{R}^{n}.
The group $E(n)$ acts continuously on $2^{\mathbb{R}^{n}}$:

$$
(g, A) \mapsto g(A)
$$

Denote by $[X]=\{F(X) \mid F \in E(n)\}$ - the orbit of an $X \in 2^{\mathbb{R}^{n}}$. By

$$
2^{\mathbb{R}^{n}} / E(n)
$$

we denote the orbit space.
Then for $[X],[Y] \in 2^{\mathbb{R}^{n}}$

$$
\rho([X],[Y])=\inf \left\{d_{H}(X, F(Y)) \mid F \in E(n)\right\}
$$

metrizes the orbit space $2^{\mathbb{R}^{n}} / E(n)$, and clearly,

In other words....
Denote by $E(n)=$ Iso \mathbb{R}^{n} the group of isometries of \mathbb{R}^{n}.
The group $E(n)$ acts continuously on $2^{\mathbb{R}^{n}}$:

$$
(g, A) \mapsto g(A)
$$

Denote by $[X]=\{F(X) \mid F \in E(n)\}$ - the orbit of an $X \in 2^{\mathbb{R}^{n}}$. By

$$
2^{\mathbb{R}^{n}} / E(n)
$$

we denote the orbit space.
Then for $[X],[Y] \in 2^{\mathbb{R}^{n}}$

$$
\rho([X],[Y])=\inf \left\{d_{H}(X, F(Y)) \mid F \in E(n)\right\}
$$

metrizes the orbit space $2^{\mathbb{R}^{n}} / E(n)$, and clearly,

$$
\rho([X],[Y])=d_{E H}(X, Y)
$$

Main results

Clearly, $d_{G H} \leq d_{E H}$. In general $d_{G H}(X, Y)$ may be strictly less than $d_{E H}(X, Y)$. For instance, take $X=\{a, b, c\}$ - the vertices of an equilateral triangle of side lenght 1, and $Y=\{*\}$.

Main results

Clearly, $d_{G H} \leq d_{E H}$. In general $d_{G H}(X, Y)$ may be strictly less than $d_{E H}(X, Y)$. For instance, take $X=\{a, b, c\}$ - the vertices of an equilateral triangle of side lenght 1, and $Y=\{*\}$.

Then $d_{E H}(X, Y)=$

Main results

Clearly, $d_{G H} \leq d_{E H}$. In general $d_{G H}(X, Y)$ may be strictly less than $d_{E H}(X, Y)$. For instance, take $X=\{a, b, c\}$ - the vertices of an equilateral triangle of side lenght 1, and $Y=\{*\}$.

Then $d_{E H}(X, Y)=\sqrt{3} / 3$

Main results

Clearly, $d_{G H} \leq d_{E H}$. In general $d_{G H}(X, Y)$ may be strictly less than $d_{E H}(X, Y)$. For instance, take $X=\{a, b, c\}$ - the vertices of an equilateral triangle of side lenght 1, and $Y=\{*\}$.
Then $d_{E H}(X, Y)=\sqrt{3} / 3$ while $d_{G H}(X, Y)=$

Main results

Clearly, $d_{G H} \leq d_{E H}$. In general $d_{G H}(X, Y)$ may be strictly less than $d_{E H}(X, Y)$. For instance, take $X=\{a, b, c\}$ - the vertices of an equilateral triangle of side lenght 1, and $Y=\{*\}$.
Then $d_{E H}(X, Y)=\sqrt{3} / 3$ while $d_{G H}(X, Y)=1 / 2$.

Main results

Clearly, $d_{G H} \leq d_{E H}$. In general $d_{G H}(X, Y)$ may be strictly less than $d_{E H}(X, Y)$.
For instance, take $X=\{a, b, c\}$ - the vertices of an equilateral triangle of side lenght 1, and $Y=\{*\}$.
Then $d_{E H}(X, Y)=\sqrt{3} / 3$ while $d_{G H}(X, Y)=1 / 2$.
Theorem

$$
\mathrm{GH}\left(\mathbb{R}^{\mathrm{n}}\right) \cong 2^{\mathbb{R}^{\mathrm{n}}} / \mathrm{E}(\mathrm{n})
$$

Sketch

$$
\begin{gathered}
2^{\mathbb{U}}\left(\mathbb{R}^{n}\right)=\left\{A \in 2^{\mathbb{U}} \mid \exists i: A \hookrightarrow \mathbb{R}^{n}\right\} \\
f: 2^{\mathbb{R}^{n}} \rightarrow 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \operatorname{Iso} \mathbb{U}=\operatorname{GH}\left(\mathbb{R}^{n}\right), \quad A \mapsto[j(A)],
\end{gathered}
$$

where $j: A \hookrightarrow \mathbb{U}$ is an embedding.

Since $d_{G H} \leq d_{E H}$, we infer that

$$
\tilde{f}: 2^{\mathbb{R}^{n}} / E(n) \rightarrow 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U}
$$

is continuous and bijective.

Since $d_{G H} \leq d_{E H}$, we infer that

$$
\tilde{f}: 2^{\mathbb{R}^{n}} / E(n) \rightarrow 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U}
$$

is continuous and bijective.
For continuity of the inverse map

$$
\tilde{f}^{-1}: 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U} \rightarrow 2^{\mathbb{R}^{n}} / E(n)
$$

we use the following

Since $d_{G H} \leq d_{E H}$, we infer that

$$
\tilde{f}: 2^{\mathbb{R}^{n}} / E(n) \rightarrow 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U}
$$

is continuous and bijective.
For continuity of the inverse map

$$
\tilde{f}^{-1}: 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U} \rightarrow 2^{\mathbb{R}^{n}} / E(n)
$$

we use the following
Theorem (Memoli)
$d_{E H} \leq C_{n} \cdot \sqrt{d_{G H}}$,

Since $d_{G H} \leq d_{E H}$, we infer that

$$
\tilde{f}: 2^{\mathbb{R}^{n}} / E(n) \rightarrow 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U}
$$

is continuous and bijective.
For continuity of the inverse map

$$
\tilde{f}^{-1}: 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U} \rightarrow 2^{\mathbb{R}^{n}} / E(n)
$$

we use the following
Theorem (Memoli)
$d_{E H} \leq C_{n} \cdot \sqrt{d_{G H}}$,
Thus

$$
\tilde{f}: 2^{\mathbb{R}^{n}} / E(n) \rightarrow 2^{\mathbb{U}}\left(\mathbb{R}^{n}\right) / \text { Iso } \mathbb{U}
$$

is a homeomorphism:

$$
G H\left(\mathbb{R}^{n}\right) \cong 2^{\mathbb{R}^{n}} / E(n) .
$$

Theorem

The action

$$
E(n) \curvearrowright 2^{\mathbb{R}^{n}}
$$

is proper.

Theorem
The action

$$
E(n) \curvearrowright 2^{\mathbb{R}^{n}}
$$

is proper.
Here proper means that for any compact subset $K \subset 2^{\mathbb{R}^{n}}$, the transporter

$$
\langle K, K\rangle=\{g \in E(n) \mid g K \cap K \neq \emptyset\}
$$

has compact closure in $E(n)$.

Theorem
The action

$$
E(n) \curvearrowright 2^{\mathbb{R}^{n}}
$$

is proper.
Here proper means that for any compact subset $K \subset 2^{\mathbb{R}^{n}}$, the transporter

$$
\langle K, K\rangle=\{g \in E(n) \mid g K \cap K \neq \emptyset\}
$$

has compact closure in $E(n)$.

Facts

- In a proper G-space each stabilizer $G_{x}=\{g \in G \mid g x=x\}$ is compact.
- Every obit $G(x)$ is closed and $G(x) \cong{ }_{G} G / G_{x}$,

Definition

Let G be a locally compact group and $H \subset G$ a compact subgroup. Then a subset $S \subset X$ of a proper G-space X is a global H-slice of X, if
(1) S is H-invariant,

Definition

Let G be a locally compact group and $H \subset G$ a compact subgroup. Then a subset $S \subset X$ of a proper G-space X is a global H-slice of X, if
(1) S is H-invariant,
(2) S is closed in X,

Definition

Let G be a locally compact group and $H \subset G$ a compact subgroup. Then a subset $S \subset X$ of a proper G-space X is a global H-slice of X, if
(1) S is H-invariant,
(2) S is closed in X,
(0) if $g S \cap S \neq \emptyset$ then $g \in H$
(1) $G(S):=\bigcup_{g \in G} g S=X$.

Definition

Let G be a locally compact group and $H \subset G$ a compact subgroup.
Then a subset $S \subset X$ of a proper G-space X is a global H-slice of X, if
(1) S is H-invariant,
(2) S is closed in X,
(3) if $g S \cap S \neq \emptyset$ then $g \in H$
(9) $G(S):=\bigcup_{g \in G} g S=X$.

The Chebyshev balls

Theorem (P.L. Chebyshev)

For every compact subset $A \subset \mathbb{R}^{n}$, there is a unique closed ball $\operatorname{Ch}(A)$, called the Chebyshev ball of A, such that $A \subset C h(A)$.

The Chebyshev balls

Theorem (P.L. Chebyshev)

For every compact subset $A \subset \mathbb{R}^{n}$, there is a unique closed ball $\operatorname{Ch}(A)$, called the Chebyshev ball of A, such that $A \subset C h(A)$.

- If $C h(A)=B(b, r)$, then we denote $\operatorname{ch}(A)=b$ - the Chebyshev center of A; it belongs to conv A.
- If $C h(A)=B(b, r)$, then we denote $\operatorname{ch}(A)=b$ - the Chebyshev center of A; it belongs to conv A.
- $R(A)=r-$ the Chebyshev radius of A.
- If $C h(A)=B(b, r)$, then we denote $\operatorname{ch}(A)=b$ - the Chebyshev center of A; it belongs to conv A.
- $R(A)=r$ - the Chebyshev radius of A.

Theorem

$$
\text { ch : } \mathbb{2}^{\mathbb{R}^{n}} \rightarrow \mathbb{R}^{n}
$$

is an $E(n)$-equivariant map, i.e.,

$$
\operatorname{ch}(g A)=g \operatorname{ch}(A), \quad A \in 2^{\mathbb{R}^{n}}, \quad g \in E(n)
$$

- If $C h(A)=B(b, r)$, then we denote $\operatorname{ch}(A)=b$ - the Chebyshev center of A; it belongs to conv A.
- $R(A)=r$ - the Chebyshev radius of A.

Theorem

$$
\text { ch : } 2^{\mathbb{R}^{n}} \rightarrow \mathbb{R}^{n}
$$

is an $E(n)$-equivariant map, i.e.,

$$
\operatorname{ch}(g A)=g \operatorname{ch}(A), \quad A \in 2^{\mathbb{R}^{n}}, \quad g \in E(n)
$$

Corollary

The inverse image $T\left(\mathbb{R}^{n}\right):=c h^{-1}(0)$ is a global $O(n)$-slice for $2^{\mathbb{R}^{n}}$.

- If $C h(A)=B(b, r)$, then we denote $\operatorname{ch}(A)=b$ - the Chebyshev center of A; it belongs to conv A.
- $R(A)=r$ - the Chebyshev radius of A.

Theorem

$$
\operatorname{ch}: 2^{\mathbb{R}^{n}} \rightarrow \mathbb{R}^{n}
$$

is an $E(n)$-equivariant map, i.e.,

$$
\operatorname{ch}(g A)=g \operatorname{ch}(A), \quad A \in 2^{\mathbb{R}^{n}}, \quad g \in E(n)
$$

Corollary

The inverse image $T\left(\mathbb{R}^{n}\right):=c h^{-1}(0)$ is a global $O(n)$-slice for $2^{\mathbb{R}^{n}}$.

Theorem

$$
\mathrm{GH}\left(\mathbb{R}^{n}\right)=2_{\mathbb{R}^{n}} / E(n) \cong T\left(\mathbb{R}^{n}\right) / O(n) .
$$

How to compute $T\left(\mathbb{R}^{n}\right) / O(n)$?
Denote

$$
C h(n):=\left\{A \in 2^{\mathbb{R}^{n}} \mid \operatorname{Ch}(A)=\mathbb{B}^{n}\right\} .
$$

How to compute $T\left(\mathbb{R}^{n}\right) / O(n)$.?
Denote

$$
\operatorname{Ch}(n):=\left\{A \in 2^{\mathbb{R}^{n}} \mid \operatorname{Ch}(A)=\mathbb{B}^{n}\right\} .
$$

How to compute $T\left(\mathbb{R}^{n}\right) / O(n)$?
Denote

$$
C h(n):=\left\{A \in 2^{\mathbb{R}^{n}} \mid \operatorname{Ch}(A)=\mathbb{B}^{n}\right\} .
$$

How to compute $T\left(\mathbb{R}^{n}\right) / O(n)$.?
Denote

$$
\operatorname{Ch}(n):=\left\{A \in 2^{\mathbb{R}^{n}} \mid \operatorname{Ch}(A)=\mathbb{B}^{n}\right\} .
$$

Proposition

(9)

$$
T\left(\mathbb{R}^{n}\right) \cong O(n) O C o n e(\operatorname{Ch}(n)) .
$$

(2)

$$
T\left(\mathbb{R}^{n}\right) / O(n) \cong O \operatorname{Cone}(\operatorname{Ch}(n) / O(n)) .
$$

Proposition

(9)

$$
T\left(\mathbb{R}^{n}\right) \cong O(n) O C o n e(\operatorname{Ch}(n)) .
$$

(2)

$$
T\left(\mathbb{R}^{n}\right) / O(n) \cong O \operatorname{Cone}(\operatorname{Ch}(n) / O(n)) .
$$

Recall the definition of an open cone:

$$
\text { OCone }(X)=X \times[0, \infty) / X \times\{0\} .
$$

Proposition

(9)

$$
T\left(\mathbb{R}^{n}\right) \cong O(n) O C o n e(\operatorname{Ch}(n)) .
$$

(2)

$$
T\left(\mathbb{R}^{n}\right) / O(n) \cong O \operatorname{Cone}(\operatorname{Ch}(n) / O(n)) .
$$

Recall the definition of an open cone:

$$
\text { OCone }(X)=X \times[0, \infty) / X \times\{0\} .
$$

Proof. $\quad f(A)=\left\{\begin{array}{cl}\frac{1}{R(A)} \cdot A, & \text { if } R(A) \neq 0 \\ \theta, & \text { if } A=\{0\} .\end{array}\right.$

Orbit spaces of Hyperspaces How to compute the orbit space $\operatorname{Ch}(n) / O(n)$?

Orbit spaces of Hyperspaces

 How to compute the orbit space $\operatorname{Ch}(n) / O(n)$?Recall that

$$
C h(n):=\left\{A \in 2^{\mathbb{B}^{n}} \mid C h(A)=\mathbb{B}^{n}\right\} \subset 2^{\mathbb{B}^{n}} .
$$

Orbit spaces of Hyperspaces

 How to compute the orbit space $\operatorname{Ch}(n) / O(n)$?Recall that

$$
\begin{gathered}
C h(n):=\left\{A \in 2^{\mathbb{B}^{n}} \mid C h(A)=\mathbb{B}^{n}\right\} \subset 2^{\mathbb{B}^{n}} . \\
C h(n) / O(n) \subset 2^{\mathbb{B}^{n}} / O(n) .
\end{gathered}
$$

Orbit spaces of Hyperspaces

 How to compute the orbit space $\operatorname{Ch}(n) / O(n)$?Recall that

$$
\begin{gathered}
C h(n):=\left\{A \in 2^{\mathbb{B}^{n}} \mid C h(A)=\mathbb{B}^{n}\right\} \subset 2^{\mathbb{B}^{n}} . \\
C h(n) / O(n) \subset 2^{\mathbb{B}^{n}} / O(n) .
\end{gathered}
$$

It is in order to mention that studying orbit spaces of hyperspaces goes back to Jim West (1976) (see [5], [6]).

Orbit spaces of Hyperspaces

 How to compute the orbit space $\operatorname{Ch}(n) / O(n)$?Recall that

$$
\begin{gathered}
C h(n):=\left\{A \in 2^{\mathbb{B}^{n}} \mid C h(A)=\mathbb{B}^{n}\right\} \subset 2^{\mathbb{B}^{n}} . \\
C h(n) / O(n) \subset 2^{\mathbb{B}^{n}} / O(n) .
\end{gathered}
$$

It is in order to mention that studying orbit spaces of hyperspaces goes back to Jim West (1976) (see [5], [6]).

Theorem (H. Toruńczyk and J. West, 1980)
$2^{S O(2)} / S O(2) \in A R$ and $2^{S O(2)} / S O(2) \neq Q$

Orbit spaces of Hyperspaces

 How to compute the orbit space $\operatorname{Ch}(n) / O(n)$?Recall that

$$
\begin{gathered}
C h(n):=\left\{A \in 2^{\mathbb{B}^{n}} \mid C h(A)=\mathbb{B}^{n}\right\} \subset 2^{\mathbb{B}^{n}} . \\
C h(n) / O(n) \subset 2^{\mathbb{B}^{n}} / O(n) .
\end{gathered}
$$

It is in order to mention that studying orbit spaces of hyperspaces goes back to Jim West (1976) (see [5], [6]).

Theorem (H. Toruńczyk and J. West, 1980) $2^{S O(2)} / S O(2) \in A R$ and $2^{S O(2)} / S O(2) \neq Q$

Theorem (S.A., 2000)
$2^{S O(2)} / O(2) \in A R$ and $2^{S O(2)} / O(2) \cong B M(2) \not \approx Q$

Properties of $\mathrm{Ch}(n)$

Theorem
(1) $C h(n)$ is $O(n)-A R$.
(2) $\mathrm{Ch}(n) / O(n)$ is an $A R$.

Properties of $\mathrm{Ch}(n)$

Theorem
(1) $C h(n)$ is $O(n)-A R$.
(2) $\mathrm{Ch}(n) / O(n)$ is an $A R$.

Theorem
(1) $C h(n) \cong Q:=[0,1]^{\infty}$.
(2) $\operatorname{Ch}(n) / O(n) \cong Q$.

Theorem

$$
\operatorname{GH}\left(\mathbb{R}^{n}\right)=2^{\mathbb{R}^{n}} / E(n) \cong Q \backslash\{*\} .
$$

Theorem

$$
\mathrm{GH}\left(\mathbb{R}^{n}\right)=2^{\mathbb{R}^{n}} / E(n) \cong Q \backslash\{*\} .
$$

Proof.
One has

$$
2^{\mathbb{R}^{n}} / E(n) \cong \operatorname{OCone}(\operatorname{Ch}(n) / O(n)) \cong \operatorname{OCone}(Q) .
$$

Theorem

$$
\mathrm{GH}\left(\mathbb{R}^{n}\right)=2^{\mathbb{R}^{n}} / E(n) \cong Q \backslash\{*\} .
$$

Proof.

One has

$$
2^{\mathbb{R}^{n}} / E(n) \cong \operatorname{OCone}(\operatorname{Ch}(n) / O(n)) \cong \operatorname{OCone}(Q) .
$$

But, it is well known (T.A. Chapman) that the open cone $\operatorname{OCone}(Q) \cong Q \backslash\{*\}$.
S.A. Antonyan, West's problem on equivariant hyperspaces and Banach-Mazur compacta, Trans. Amer. Math. Soc. 355, no. 8 (2003), 3379-3404.
[2] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser (1999).
[3] M. Gromov. Structures métriques pour les variétés riemanniennes. Vol. 1 of Textes Mathématiques [Mathematical Texts], CEDIC, Paris, 1981. Edited by J. Lafontaine and P. Pansu.
[4] T.A. Chapman, Lectures on Hilbert cube manifolds, C. B. M. S. Regional Conference Series in Math., 28, Amer. Math. Soc., 1976.
[5] J.E. West, Induced involutions on Hilbert cube hyperspaces, Topology Proc. 1 (1976), 281-293.
[6] H. Toruńczyk and J.E. West, The fine structure of S1/S1; a Q-manifold hyperspace localiza- tion of the integers, in: Proc. Internat. Conf. Geom. Topol., 439-449, PWN-Pol. Sci. Publ., Warszawa, 1980.

THE END!

Some ideas of the proof that $C h(n) / O(n) \cong Q$.

Theorem (H. Toruńczyk, 1978)
A a compact metrizable space X is homeomorphic to the Hilbert cube iff

- X is an AR.
- X satisfies the DDP (Disjoint Discs Property).

Some ideas of the proof that $\operatorname{Ch}(n) / O(n) \cong Q$.

Theorem (H. Toruńczyk, 1978)
A a compact metrizable space X is homeomorphic to the Hilbert cube iff

- X is an AR.
- X satisfies the DDP (Disjoint Discs Property).

Theorem (S. Antonyan, 1988)
Let G be a compact group, X a metrizable G-AR. Then the orbit space X / G is an AR.

$D^{n} P$ and DDP

Definition

Y satisfies $D^{n} P$ for a given integer $n \geq 0$, if each map $f: \mathbb{B}^{n} \rightarrow Y$ can be arbitrary closely approximated by two maps $f_{1}, f_{2}: \mathbb{B}^{n} \rightarrow Y$ with disjoint images.

DDnP and DDP

Definition

Y satisfies $D^{n} P$ for a given integer $n \geq 0$, if each map $f: \mathbb{B}^{n} \rightarrow Y$ can be arbitrary closely approximated by two maps $f_{1}, f_{2}: \mathbb{B}^{n} \rightarrow Y$ with disjoint images.
Y satisfies DDP, if it satisfies $D^{n} P$ for all $n \geq 0$.

$D^{n} P$ and DDP

Definition

Y satisfies $D^{n} P$ for a given integer $n \geq 0$, if each map $f: \mathbb{B}^{n} \rightarrow Y$ can be arbitrary closely approximated by two maps $f_{1}, f_{2}: \mathbb{B}^{n} \rightarrow Y$ with disjoint images.
Y satisfies DDP, if it satisfies DD $^{n} P$ for all $n \geq 0$.

Proposition

A compact metric ANR space X satisfies the property DDP iff for every $\varepsilon>0$, there exist two continuous maps $f_{\varepsilon}, g_{\varepsilon}: X \rightarrow X$ such that:
(1) $\rho\left(x, f_{\varepsilon}(x)\right)<\varepsilon$ and $\rho\left(x, g_{\varepsilon}(x)\right)<\varepsilon$ for all $x \in X$.
(2) $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} g_{\varepsilon}=\emptyset$.

Equivariant DDP

Theorem

For every $\varepsilon>0$, there exist two continuous $O(n)$-equivariant maps $f_{\varepsilon}, g_{\varepsilon}: \operatorname{Ch}(n) \rightarrow \mathrm{Ch}(n)$ such that:
(1) $\rho\left(A, f_{\varepsilon}(A)\right)<\varepsilon$ and $\rho\left(A, g_{\varepsilon}(A)\right)<\varepsilon$ for all $A \in \operatorname{Ch}(n)$.
(2) $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} g_{\varepsilon}=\emptyset$.

- First we define the map $f_{\varepsilon}: C h(n) \rightarrow C h(n)$ by

Equivariant DDP

Theorem

For every $\varepsilon>0$, there exist two continuous $O(n)$-equivariant maps $f_{\varepsilon}, g_{\varepsilon}: \operatorname{Ch}(n) \rightarrow C h(n)$ such that:
(1) $\rho\left(A, f_{\varepsilon}(A)\right)<\varepsilon$ and $\rho\left(A, g_{\varepsilon}(A)\right)<\varepsilon$ for all $A \in C h(n)$.
(2) $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} g_{\varepsilon}=\emptyset$.

- First we define the map $f_{\varepsilon}: C h(n) \rightarrow C h(n)$ by

$$
f_{\varepsilon}(A)=\left\{x \in \mathbb{B}^{n} \mid \operatorname{dist}(x, A) \leq \varepsilon\right\} .
$$

Equivariant DDP

Theorem

For every $\varepsilon>0$, there exist two continuous $O(n)$-equivariant maps $f_{\varepsilon}, g_{\varepsilon}: \operatorname{Ch}(n) \rightarrow C h(n)$ such that:
(1) $\rho\left(A, f_{\varepsilon}(A)\right)<\varepsilon$ and $\rho\left(A, g_{\varepsilon}(A)\right)<\varepsilon$ for all $A \in \operatorname{Ch}(n)$.
(2) $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} g_{\varepsilon}=\emptyset$.

- First we define the map $f_{\varepsilon}: C h(n) \rightarrow C h(n)$ by

$$
f_{\varepsilon}(A)=\left\{x \in \mathbb{B}^{n} \mid \operatorname{dist}(x, A) \leq \varepsilon\right\} .
$$

It is clear that $f_{\varepsilon}(A) \in \operatorname{Ch}(n)$ whenever $A \in \operatorname{Ch}(n)$.

Proof.

- The second map

$$
g_{\varepsilon}: C h(n) \rightarrow C h(n)
$$

is defined in such a way that

$$
\operatorname{Int} g_{\varepsilon}(A)=\emptyset
$$

Then $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} g_{\varepsilon}=\emptyset$.

Proof.

- The second map

$$
g_{\varepsilon}: C h(n) \rightarrow C h(n)
$$

is defined in such a way that

$$
\operatorname{Int} g_{\varepsilon}(A)=\emptyset
$$

Then $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} g_{\varepsilon}=\emptyset$.
Then the maps $f_{\varepsilon}, g_{\varepsilon}: C h(n) \rightarrow C h(n)$ induce

Proof.

- The second map

$$
g_{\varepsilon}: C h(n) \rightarrow C h(n)
$$

is defined in such a way that

$$
\operatorname{Int} g_{\varepsilon}(A)=\emptyset
$$

Then $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} g_{\varepsilon}=\emptyset$.
Then the maps $f_{\varepsilon}, g_{\varepsilon}: C h(n) \rightarrow C h(n)$ induce

$$
\widetilde{f}_{\varepsilon}, \widetilde{g}_{\varepsilon}: C h(n) / O(n) \rightarrow C h(n) / O(n)
$$

which are ε-close to the indentity map and have disjoint images.
S.A. Antonyan, West's problem on equivariant hyperspaces and Banach-Mazur compacta, Trans. Amer. Math. Soc. 355, no. 8 (2003), 3379-3404.
[2] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser (1999).
[3] M. Gromov. Structures métriques pour les variétés riemanniennes. Vol. 1 of Textes Mathématiques [Mathematical Texts], CEDIC, Paris, 1981. Edited by J. Lafontaine and P. Pansu.
[4] T.A. Chapman, Lectures on Hilbert cube manifolds, C. B. M. S. Regional Conference Series in Math., 28, Amer. Math. Soc., 1976.
[5] J.E. West, Induced involutions on Hilbert cube hyperspaces, Topology Proc. 1 (1976), 281-293.
[6] H. Toruńczyk and J.E. West, The fine structure of S1/S1; a Q-manifold hyperspace localiza- tion of the integers, in: Proc. Internat. Conf. Geom. Topol., 439-449, PWN-Pol. Sci. Publ., Warszawa, 1980.

THE END!

