Chaos in hyperspaces of nonautonomous discrete systems

Manuel Sanchis, Iván Sánchez, Hugo Villanueva^{*1}

hugo.villanueva@unach.mx

Given a topological space *X*, let $f_n : X \to X$ be a continuous function for each positive integer *n*, and $f_{\infty} = (f_1, f_2, ..., f_n, ...)$. The pair (X, f_{∞}) denotes the *nonautonomous discrete dynamical system* (NDS, for short). Given a NDS (X, f_{∞}) , it induces a NDS $(\mathcal{K}(X), \overline{f_{\infty}})$, where $\mathcal{K}(X)$ is the hyperspace of all non-empty compact subsets of X endowed with the Vietoris topology and, for every positive integer *n*, $\overline{f_n}$: $\mathcal{K}(X) \to \mathcal{K}(X)$ is the continuous function induced by f_n . We study the interaction of some dynamical properties (like transitivity, weakly mixing, points with dense orbit and density of periodic points) of a NDS (X, f_{∞}) and its induced NDS $(\mathcal{K}(X), \overline{f_{\infty}})$. Among other results, we show that (\mathbb{I}, f_{∞}) is weakly mixing of order 3 if and only if $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is weakly mixing of order 3, where $\mathbb{I} = [0, 1]$. We also present examples of NDS showing that the classical result stating that transitivity is a sufficient condition for an autonomous discrete dynamical system on the interval to be Devaney chaotic fails to be true for NDS.

Copyright © Villanueva-Méndez

¹ The author was partially supported by PROFOCIES

