Companions of partially ordered sets

Jerry E. Vaughan

vaughanj@uncg.edu

The results we discuss were motivated by the (now retracted) claim by N. Howes and W. Sconyers that "every normal, linearly Lindelöf space is Lindelöf." Let (D, \leq) be a partially ordered set. A well ordered set (C, \leq) is called a companion of (D, \leq) provided *C* is a cofinal subsets of (D, \leq) , and \leq is a well order on *C* such that for every $c_1, c_2 \in C$ if $c_1 \leq c_2$ then $c_1 \leq c_2$. The Ordering Lemma says that every partially ordered set has a companion. Given a directed set (D, \leq) and a net $f : D \to X$, the restriction $f \upharpoonright C$ of the net to the companion is a transfinite sequence. We discuss how the convergence and clustering of $f \upharpoonright C$ is related to the convergence and clustering of transfinite sequences. We give an example to show that a companion sequence $f \upharpoonright C$ can have a cluster point but *f* has no cluster point.

Copyright © Vaughan

