Pinning Down versus Density

Lajos Soukup*, István Juhász, Jan van Mill, Zoltán Szentmiklóssy

soukup@renyi.hu, juhasz@renyi.hu, j.vanMill@uva.nl, szentmiklossyz@gmail.com

The *pinning down number* pd(X) of a topological space X is the smallest cardinal κ such that for any neighborhood assignment $U : X \to \tau_X$ there is a set $A \in [X]^{\kappa}$ with $A \cap U(x) \neq \emptyset$ for all $x \in X$. Clearly, $c(X) \leq pd(X) \leq d(X)$.

The following statements are equivalent: (a) $2^{\kappa} < \kappa^{+\omega}$ for each cardinal κ ; (b) d(X) = pd(X) for each Hausdorff space X; (c) d(X) = pd(X) for each 0-dimensional Hausdorff space X; (d) d(X) = pd(X) for each Abelian topological group X; (e) d(X) = pd(X) for each connected, locally connected, homogeneous, regular space X.

Let (f) be the following statement: d(X) = pd(X) for each connected, Tychonoff space *X*. We proved that (f) is strictly weaker than (a)-(e) above, but the failure of (f) is still consistent.

We show that the following three statements are *equiconsistent*:

- 1. There is a singular cardinal λ with $pp(\lambda) > \lambda^+$, i.e. Shelah's Strong Hypothesis fails;
- 2. there is a 0-dimensional Hausdorff space *X* such that $|X| = \Delta(X)$ is a regular cardinal and pd(X) < d(X);
- 3. there is a topological space *X* such that $|X| = \Delta(X)$ is a regular cardinal and pd(X) < d(X).

We discuss cardinal inequalities involving pd(X).

