Characterizing Noetherian spaces as Δ_2^0 -analogue to compact spaces

Matthew de Brecht, Arno Pauly*

Arno.M.Pauly@gmail.com

In the presence of suitable power spaces, compactness of **X** can be characterized as the singleton $\{\emptyset\}$ being open in $\mathcal{A}(\mathbf{X})$. Equivalently, this means that universal quantification over a compact space preserves open predicates.

Using the language of represented spaces, one can make sense of notions such as a Σ_2^0 -subset of the space of Σ_2^0 -subsets of a given space [1]. This suggests higher-order analogues to compactness: We can, e.g. , investigate the spaces X where $\{\emptyset\}$ is a Δ_2^0 -subset of the space of Δ_2^0 -subsets of X. Call this notion Δ_2^0 -compactness. As Δ_2^0 is self-dual, we find that both universal and existential quantifier over Δ_2^0 -compact spaces preserve open predicates.

Recall that a space is called Noetherian iff every subset is compact. Within the setting of Quasi-Polish spaces [2], we can fully characterize the Δ_2^0 -compact spaces. Note that the restriction to Quasi-Polish spaces is sufficiently general to include plenty of examples.

Theorem A Quasi-Polish space is Noetherian iff it is Δ_2^0 -compact.

- [1] A. Pauly and M. de Brecht, *Towards synthetic descriptive set theory: An instantiation with represented spaces*, arXiv 1307.1850.
- [2] M. de Brecht, Quasi-Polish spaces, Annals of Pure and Applied Logic 164 (2013), no. 3, 354–381

Copyright © Pauly

