On κ -metrizable spaces

Andrzej Kucharski*, Sławomir Turek

akuchar@math.us.edu.pl, sturek@ujk.edu.pl

The concept of a κ -metrizable spaces was introduced by E. Shchepin in 1976. Let RC(X) denote the set of all regular closed sets of a topological space *X*. A topological space *X* is κ -metrizable if there exists a function $\rho : X \times RC(X) \rightarrow [0, \infty)$ satisfying the following conditions:

- 1. $\rho(x, C) = 0$ if and only if $x \in C$ for every $x \in X$,
- 2. If $C \subseteq D$, then $\rho(x, C) \ge \rho(x, D)$ for every $x \in X$,
- 3. $\rho(\cdot, C)$ is a continuous function for every $x \in X$,
- 4. $\rho(x, cl(\bigcup_{\alpha < \lambda} C_{\alpha})) = \inf_{\alpha < \lambda} \rho(x, C_{\alpha})$ for every non-decreasing totally ordered sequence $\{C_{\alpha} : \alpha < \lambda\} \subset RC(X)$ and every $x \in X$.

We say that ρ is κ -metric if it satisfies condition (1) - (4). If ρ fulfills condition (1) - (3) and $\rho(x, cl(\bigcup_{n < \omega} C_n)) = \inf_{n < \omega} \rho(x, C_n)$ for any chain $\{C_n : n < \omega\} \subset RC(X)$ and any $x \in X$, then we say that ρ is countable κ -metric. If a space X has a countable κ -metric, then we call this space countably κ -metrizable.

We show that κ -metrizable spaces is a proper subclass of countable κ -metrizable spaces. On the other hand, for pseudocompact spaces the new class coincides with κ -metrizable spaces. We prove a generalization of Chigogidze result that Čech–Stone compactification of pseudocompact countable κ -metrizable space is κ -metrizable. We also give a new characterization of existence measurable cardinal using countable κ -metric.

Copyright © Kucharski

