Fixed point theorems for maps with various local contraction properties

Krzysztof C. Ciesielski, Jakub Jasinski*

KCies@math.wvu.edu, Jakub.Jasinski@scranton.edu

Let $\langle X, d \rangle$ be a metric space. A function $f : X \to X$ is *locally contractive* (resp. *locally shrinking*) if for every $x \in X$ there exists $\epsilon_x > 0$ and $\lambda_x \in [0,1)$ such that $d(f(y_1), f(y_2)) \leq \lambda_x d(y_1, y_2)$ (resp. $d(f(y_1), f(y_2)) < d(y_1, y_2)$) for all distinct $y_1, y_2 \in B(x, \epsilon_x)$. Functions with similar properties are known to have fixed or periodic points for spaces X with certain topological properties (e.g., compactness, connectedness and other). We discuss classic and recently proved fixed/periodic point theorems for several different classes of locally contractive / shrinking functions defined on a variety of metric spaces.

Copyright © Jasinski

