On cohomological properties of remainders

Vladimer Baladze¹

vbaladze@gmail.com

In the paper are studied cohomological properties of remainders of Stone–Čech compactifications. Let $H^n_{\infty,f}(X,A;G)$ be the *n*-dimensional border cohomology group of closed pair (X, A) of normal spaces with coefficients in Abelian group *G* based on the set of all extendable fringes of normal space *X* [1].

The border cohomological dimension $d_f^{\infty}(X;G)$ is defined to be the smallest integer n such that, whenever $m \ge n$ and A is a closed subset in X, then the homomorphism $i^* : H^n_{\infty,f}(X;G) \to H^n_{\infty,f}(A;G)$, induced by the inclusion $i : A \to X$, is onto.

Let $H_f^n(X, A; G)$ be the *n*-dimensional Čech cohomology group of closed pair of normal spaces and let $d_f(X; G)$ be the cohomological dimension of normal space X [2].

Theorem Let A be a closed subset of metrizable space X. Then

$$H_f^n(\beta X \setminus X, \beta A \setminus A; G) = H_{\infty,f}^n(X, A; G),$$

 $d_f^\infty(X; G) \le d_f(\beta X \setminus X; G).$

Remark Such type result also is true for Čech complete spaces and spaces with bicompact axiom of countability [1].

 Y. M. Smirnov, On the dimension of increments of bicompact extensions of proximity spaces and topological spaces, Mat. Sb. (N.S.) (1966), 141–160

¹ The authors supported by grant FR/233/5-103/14 from Shota Rustaveli National Science Foundation (SRNSF)

